Certain Generalization of Appell’s Functions and Riemann–Liouville Fractional Derivative Operator and Their Applications

dc.contributor.authorSaddam Husain, Nabiullah Khan
dc.date.accessioned2025-11-14T06:12:08Z
dc.date.issued2025
dc.descriptionBook Title: Modeling of Discrete and Continuous Systems: Ordinary, Partial and Fractional Derivatives. Book Editors: Mohamed Kharrat, Nouressadat Touafek, Moez Krichen.
dc.description.abstractHere, the Riemann–Liouville fractional derivative operator concept and a new and interesting extended form of Appell’s functions are discussed. We discovered new formulae for fractional derivatives of various well-known functions in terms of new extended Appell’s hypergeometric functions of two variables and Lauricella hypergeometric functions of three variables, with a view toward the analytic properties and application of the new Riemann–Liouville-type fractional derivative operator. Additionally, we defined the Mellin transformations of that function. Next, we created generating functions for generalized extended hypergeometric functions to validate our new operator using an extended Riemann–Liouville fractional derivative operator and a new definition of extended Appell’s functions.
dc.identifier.isbn978-981-97-8715-9
dc.identifier.isbn978-981-97-8714-2
dc.identifier.urihttps://doi.org/10.1007/978-981-97-8715-9_10
dc.identifier.urihttp://136.232.12.194:4000/handle/123456789/1538
dc.language.isoen_US
dc.publisherSpringer Nature Singapore Pte Ltd.
dc.subjectAppell’s functions
dc.subjectRiemann–Liouville fractional derivative
dc.subjectextended hypergeometric functions
dc.subjectextended beta function
dc.subjectMittag-Leffler function
dc.subjectfractional calculus
dc.subjectMellin transform
dc.titleCertain Generalization of Appell’s Functions and Riemann–Liouville Fractional Derivative Operator and Their Applications
dc.typeBook chapter

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
16. Generalized Appell's function.pdf
Size:
449.34 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: