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ⅹ 

ABSTRACT 

 

Modern structural optimization came in existence in the 1900s which began adopting 

gradient-based optimization. They had their fair share of drawbacks which led to 

their replacement by meta-heuristic algorithms. Meta-heuristic algorithms were 

capable methods which were inspired by nature and its processes such as particle 

swarm optimization, ant colony optimization, evolution-based algorithm, genetic 

algorithm, harmony search, and teaching learning-based optimization. To make these 

algorithms more effective modified versions were introduced in the last decade. The 

common drawbacks of these algorithms were constraint violation, lack of learning 

from experiences and requirement more iteration to reach a desired solution. In a 

nutshell, it can be said that they lacked smart computing. 

Introduced in the 1950s Artificial Intelligence has been emerging in various fields. In 

the last decade, it has emerged in the field of Earthquake Engineering, Structural 

Engineering, and Structure Health Monitoring System. Aforementioned fields have 

used AI methods such as pattern recognition, deep learning, and machine learning for 

optimization. In this study machine learning was used to optimize the truss structure 

by reducing the search space and using adaptive analysis. The result of this study 

showed that the machine learning algorithm took less structural analysis while giving 

lightest design with no constraint violation. Result of this study showed that ML can 

be successfully applied in the structure design and optimization.  
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CHAPTER-1 

INTRODUCTION 
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Optimization: The basic definition of structure in mechanics is an assemblage of 

different materials to sustain the load. Optimization is the process or method to find 

the best possible solution for a given situation or problem. The best possible solution 

can be maximization or minimization of a given function of the problem. So 

structure optimization can be defined as the process to make the assemblage of 

materials to sustain load in the best possible way. This best can differ with the aim of 

application and objective. In terms of a structure optimization, we want to find the 

structure which can transmit the load from the space region to fixed support in the 

best possible way. The best possible way could be to make the structure as light as 

possible by minimization of weight or maximization of structure strength by keeping 

the structure stiff, in both conditions the aim and approach are different. By making 

light structure we are making a cost-effective structure and by making stiff structure 

we are aiming for the structure that can withstand large values of loads under 

extreme circumstances where the intensity of load and forces on the structure change 

very rapidly as well as a very high value. Every optimization problems have a 

limiting factor that is called constraints; these constraints are the control variable that 

keeps the optimization process in a boundary of safe limits. Constraints are one of 

the main components of the optimization process, optimize structure is considered 

safe only if the constraint violation is minimum. 

In the optimization of structure two methods are followed. 

The iterative-intuitive method, in this method specific design is chosen and the 

requirement is checked with the optimal design. To attain the optimal design 

redesign is done until an 

optimal design is attained. 

In the border picture, it is a 

hit and trial method which 

keeps on changing at every 

iteration without following 

any specific logic or 

conceptual design method 

Structure 
optimization

Iterative-intuitive 
method

Mathematical 
design(optimization 

algorithm)

Figure 1. Structure optimization 
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because of that this method is generally very time taking process and is applied to 

simple problems. At a very large scale or complex problem using this method 

becomes very cumbersome and becomes impossible to use.  

Mathematical design, in this method an optimization problem is formulated after the 

conceptual design is attained. The requirement of the design which acts as a 

constraint and under those constrain best possible ways is formulated to give the 

optimum result. To attain the optimum result an algorithm is formulated by studying 

and inspiring from a specific logic, these algorithms are called optimization 

algorithm, it is further classified as stochastic and deterministic methods which are 

discussed in detail in chapter 2. In this study, the mathematical design method of 

optimization is used to make the developed algorithm applicable to complex 

problems. 

 

1.1  Mathematical form in an optimization problem 

Some functions and variables are always present in any type of optimization. 

Objective function (f): A function used to classify designs. For every possible design, 

function f returns a number which indicates the goodness of the design. Usually, f is 

chosen in such a way that a small value is better than a large one (a minimization 

problem and Vice a Versa in maximization problem). Generally, f is a measure of 

weight, displacement in a given direction, effective stress, or even cost of production. 

Design variable (x): A function or vector that describes the design, and which can be 

changed during optimization. It may represent geometry or choice of material when 

it describes the geometry, it may relate to a sophisticated interpolation of shape or it 

may simply be the area of a bar or the thickness of a sheet. 

State variable (y): For a given structure, i.e., for a given design x, y is a function or 

vector that represents the response of the structure. For a mechanical structure, 

response means displacement, stress, strain, or force. This variable is called 
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constraints that keep the structure safe and determinate in case topology 

optimization. 

The general structural optimization problem takes the form:   

(𝑠𝑜) ൞

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦)𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑥 𝑎𝑛𝑑 𝑦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ൝

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛 𝑦
𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛 𝑥

𝑒𝑞𝑢𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
ൡ

ൢ 

 

Eq. (1.1) 

 

A generalized form of the above equation with multiple objectives is called 

multi-objective or criteria optimization: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {𝑓ଵ(𝑥, 𝑦), 𝑓ଶ(𝑥, 𝑦), … … , 𝑓௡(𝑥, 𝑦)} Eq. (1.2) 

 

Where n is the number of objective functions, and all the constraints are the same as 

for(𝑠𝑜). The above function is not a standard optimization function as the function 

will not be optimized for the same value of x & y. So as optimizers we try to reach 

Pareto optimality [1].  

1.2 Types of optimization 

The structural optimization is usually done in 3 ways of size optimization, shape 

optimization, and topology optimization. 

Size optimization: In this method of structural optimization the size of the individual 

member of the structure is changed. The thicknesses of the members are generally 

reduced to minimize the cross-sectional area of the member while satisfying the 

design constraint as shown in fig 2(d). The minimization of the cross-sectional area 

also reduces the mass of the structure that is why size optimization is often termed as 

mass or weight optimization. The length and density of the members are kept fixed 

and thickness is changed at iteration, the number of members and the shape of the 

overall structure is not changed. 
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Shape optimization: In this method of optimization the size of an individual member 

is changed by changing the length and thickness of the member. Optimization in this 

form is attained by changing the shape and modifying the boundaries but keeping the 

number of node connections and number of elements fixed. In this approach, the best 

possible location of the node is determined to serve the purpose. The shape and size 

optimization is the most prominently used method as structural integrity and 

assemblage are not disturbed hence determinacy of the structure is not affected as 

shown in fig 2(c). 

 

Topology optimization: this is the most versatile form of optimization. In this method 

topology of the structure is changed by adding or removing certain members without 

losing the stability of the structure, for example in truss optimization area of certain 

members are taken as zero i.e. removing that member from the topology of the truss 

and changing the connectivity of nodes and thus changing the topology of members 

to get an optimal result as in fig 2(b). The design constraint in the topology 

optimization is considered more seriously as the violation of constraint is very 

common, usually, in the other two types of optimization two constraints stress and 

Figure 2. Different types of optimization: (a) Initial design, (b) Topology optimization, (c) Shape 
optimization, (d) Size optimization 
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displacement are enough to keep the structure safe but in this case, apart from two 

constraints, frequency constraints are also considered. This approach is very 

aggressive and requires high computational effort [1]. 

1.3 Truss  

A truss is a structure that is an assemblage of beams and other elements of various 

shapes. These beams and members are called truss members; their combination 

forms a rigid structure. Truss members can be further be classified into different 

categories. Members under the tension, these members are on the bottom and are 

called as bottom chords. Members under the compression, these members are on the 

top and are called a top chord. The internal members are called webs and the areas 

under webs are called panels. Analysis of the truss is done by following two force 

member concept. The concept of this analysis is that truss can only take pure tension 

or compression without any bending or shear load. The joints of the nodes are pin-

jointed, avoiding rigid joints. In other words, a truss can withstand the load purely by 

the axial resistance of its members. To maintain the axial resistance two conditions 

are to be met: 

1. Joints between the members should be frictionless, can be pin-jointed. 

2. All the loads must be applied at the joints and not on the members directly. 

The assemblage of the members of the truss is not done in any arbitrary fashion 

rather it should be statically stable, if the structure is not statically stable due to 

requirement of assemblage then static and kinematic indeterminacy is determined for 

which analysis is done by either by joint method or section method. 

Static indeterminancy 
 External Internal  

2D Truss 𝑟௘ − 3 2𝑗 = 𝑚 + 3 Eq. (1.3a) 
3D Truss 𝑟௘ − 6 3𝑗 = 𝑚 + 6 Eq. (1.3b) 

 

Kinematic Indeterminancy 

2D Truss 2𝑗 − 𝑟௘  Eq. (1.3c) 
3D Truss 3𝑗 − 𝑟௘  Eq. (1.3d) 
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Where j is the number of joints, m is the number of members in the truss and re is the 

external reactions ehich depend upon the type of support (fixed, hinged, roller). 

The analysis method used in the work is based on method of joints which is sloved 

by flexibility matrix method.  

Truss optimization is focused on finding a design that minimizes the structural 

weight while satisfying stress and displacement constraints. When the truss geometry 

is fixed the objective of the optimization is to select a cross-sectional area for each 

member so that the weight is minimized while stress and deflection constraints are 

met. 

Weight optimization takes a general form of the following relation based on Eq.(1.1).  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑤 = ∑ 𝛾௘𝐿௘𝐴௘ 

 

Eq. (1.4) 

Subject to:                     𝜎௟௢௪௘௥ ≤ 𝜎௘ ≤ 𝜎௨௣௣௘௥ 

                                       𝛿௟௢௪௘௥ ≤ 𝛿௘ ≤ 𝛿௨௣௣௘௥ 

                                       𝐴௟௢௪௘௥ ≤ 𝐴௘ ≤ 𝐴௨௣௣௘௥ 

 

Where,  

w is the weight of the truss which is composed of N members and for each member e  

 𝛾௘ is the unit weight of the material for each member  

𝐿௘ is the length of each member  

𝐴௘ is the cross-sectional area of truss for each member 

The truss design must satisfy limits on member stress 𝜎௘ and deflection 𝛿௘ at each 

connection. Limit on the cross-sectional area, stress and deflection are given by 

lower (L) and upper(U) boundaries [26]. 
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Stress constraints and deflection constraints are addressed as a penalty function. 

Formulation of the penalty function is done by addressing the 𝜎௘ and 𝛿௘ in each 

member of the truss is compared with the maximum allowable stress 𝜎௅௢௪௘௥,௎௣௣௘௥ 

and maximum allowable deflection 𝛿௅௢௪௘௥,௎௣௣௘௥ of each connection c of the truss. 

The penalty function is used to account for the infeasible truss design. The objective 

function is multiplied with the cumulative penalty function that is proportional to the 

amount of stress and deflection constraints violation. This method generates a 

slightly heavy objective function (structural weight) but always keep the violation in 

check, heavy structural weight is the drawback which has been eliminated using ML 

algorithm.  

The stress penalty function ∅ఙ
௘  for each member, e is defined as  

𝑖𝑓 𝜎௅௢௪௘௥ ≤ 𝜎௘ ≤ 𝜎௎௣௣௘௥ , 𝑡ℎ𝑒𝑛 ∅ఙ
௘ = 0 

 

Eq. (1.5) 

𝑖𝑓 𝜎௘ < 𝜎௅௢௪௘௥ 𝑜𝑟 𝜎௘ > 𝜎௎௣௣௘௥, 𝑡ℎ𝑒𝑛 ∅ఙ
௘ = ቤ

𝜎௘ − 𝜎௅௢௪௘௥,௎௣௣௘௥

𝜎௅௢௪௘௥,௎௣௣௘௥
ቤ  

 
Eq. (1.6) 

 

The total stress penalty ∅ఙ
௘  for a truss design, k is: 

∅ఙ
௞ = ෍ ∅ఙ

௘  

ே೘

௘ୀଵ

 
 
Eq. (1.7) 

 

The penalty function for deflection in the x, y, z directions ∅ఋ௫
௖ , ∅ఋ௬

௖ , ∅ఋ௭
௖  are 

computed at each connections c  is defined as 

𝑖𝑓 𝛿௅௢௪௘௥ ≤ 𝛿௖(௫,௬,௭) ≤ 𝛿௎௣௣௘௥  , 𝑡ℎ𝑒𝑛 ∅ఋ(௫,௬,௭)
௖ = 0 Eq. (1.8) 

𝑖𝑓 𝛿௖(௫,௬,௭) < 𝛿௅௢௪௘௥ 𝑜𝑟  𝛿௖(௫,௬,௭) > 𝛿௎௣௣௘௥, 𝑡ℎ𝑒𝑛 ∅ఋ(௫,௬,௭)
௖

= ቤ
𝛿௖(௫,௬,௭) − 𝛿௅௢௪௘௥,௎௣௣௘௥

𝛿௅௢௪௘௥,௎௣௣௘௥
ቤ 

 

Eq. (1.9) 
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The total deflection penalty ∅ఋ
௖  for a truss design, k is: 

∅ఋ
௞ = ෍ൣ∅ఋ௫

௖ + ∅ఋ(௬)
௖ + ∅ఋ(௭)

௖ ൧ 

ே೎

௖ୀଵ

 
 
Eq. (1.10) 

The total penalty 𝜑௞ for truss design k is then equal to the sum of stress and 

deflection with a positive penalty exponent 𝜀, defined as: 

𝜑௞ = (1 + ∅ఙ
௞ + ∅ఋ

௞)ఌ Eq. (1.11) 

 

The fitness function 𝐹௞ is the product of the weight of truss design k and its total 

penalty: 

𝐹௞ = 𝜑௞𝑊௞ 1.12 

 

1.4 Optimization algorithm 

The mathematical approach to optimization is done by the formulation of an 

algorithm for conceptual design and an algorithm is known as an optimization 

algorithm. The optimization algorithm is classified into two categories where first is 

the deterministic method under which we have a gradient-based optimization 

algorithm and the second is termed as the stochastic method under which we have 

heuristic and meta-heuristic algorithm.  

Gradient-based optimization algorithm: the optimization method is based on gradient 

ascent or gradient descent to reach to the nearest best solution. These methods are 

generally iterative method that relies on the information of gradient. Some examples 

of gradient-based methods are Sequential Linear programming, Sequential Quadratic 

programming. The shortcoming of this approach has been discussed in the literature 

overview. 

Heuristic and meta-heuristic algorithms are the most adopted method in recent 

literature because of their simplicity of code and implementation. These methods are 

generally nature-inspired and are developed by mathematical representations of 
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natural processes. Examples of the meta-heuristic algorithm are Particle Swarm 

Optimization (PSO), Genetic Objectives (GP), Teaching-Learning Based 

Optimization (TLBO), Symbiotic Organism Search (SOS), Jaya algorithm, Water 

Wave Optimization (WWO), Big Bang Big Crunch (BB-BO), Whale Optimization 

Algorithm (WOA), Evolution Algorithm (EA) and their respective enhanced version 

are used in recent works of literature, these meta-heuristic algorithms are population-

based search methods. In this study teaching-learning based optimization has been 

used with machine learning. The machine-learning algorithm was used to reduce the 

search space and then TLBO was applied if needed.  

 

 

Figure 3. Classification of the optimization algorithm 

1.4.1 Teaching learning based optimization 

The TLBO is a population-based meta-heuristic search method like HS, ACO, PSO, 

BB–BC, and ABC. The TBLO method presents a mathematical model for 

optimization problems based on the simple teaching process. The primary objective 

of the TLBO method is to improve the average performance of individuals in a 

population. It is assumed that the distribution of grades in a given class of students 

Optimization 
algorithm

Deterministic

Gradient-based 
methods

Stochastic

Metaheuristic
algorithm

Heuristic 
algorithm
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follows a normal distribution, in such a class, a more qualified teacher will provide 

better student outcomes as measured by a higher mean value. At iteration i, the best 

student is selected as the teacher Ti and then the teacher shares his or her knowledge 

with other students to improve overall performance or mean of the class from Mi to 

Mi+1. The process is repeated until the best teacher is obtained. An analogy between 

the TLBO and the optimization of truss structures is established in the following 

way: a class is considered as a population which contains truss designs, a learner in a 

class denotes a truss design in the population, a design variable represents a subject 

taught to the student, the grade of a student denotes the weight of truss design, the 

teacher is the truss design with the lowest weight in the population.  In addition to the 

teacher-student interaction, there is collaborative learning among students. In the 

TLBO algorithm, both of these classroom interactions are implemented in two 

different consecutive processes: a Teacher Phase that simulates the influence of a 

teacher on students; and a Learner Phase that models the cooperative learning 

between students 

Teaching phase: The mathematical equation of the teaching phase is written as 

𝑋௡௘௪
௞ = 𝑋௢௟ௗ

௞ ± ∆ Eq. (1.13) 

∆= 𝑇ி × 𝑟|𝑀 − 𝑇| Eq. (1.14) 

 

Where, 

Xk
new denotes the design variable for the kth design vector, TF is the teaching factor 

with a random number r within range of [0,1], M is the mean of class, T is the state 

of the teacher. ∆ denotes the difference between the teacher and class mean (update) 

for each design variable and it should be selected in such a way that the student 

always moves towards the teacher. The teaching factor TF in Eq. (1.14) is the only 

adjustable parameter in the modified TLBO algorithm and is used to increase the size 

of the local search space around each student. Rao et al. [46] presented data to 

indicate that a value of TF = 2 is appropriate to balance both the exploration and 

exploitation aspects of the search in the Teacher Phase same value has been used in 

this study. Both teacher and mean values play important roles in directing the 
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population through the search space. Since TLBO is an iterative process, at the end 

of each teaching cycle, the role of the teacher is updated to the current best student in 

the class. As define in Eq. (1.15), the computation of the mean is important to 

establishing the scale of the search. The equation of mean which has been used here 

was given by Rao et al.[46] in the original algorithm as. 

𝑀 =
1

𝑁
෍ 𝑋௞

ே

௞ୀଵ

, 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
 
Eq. (1.15) 

 

Learning phase: the procedure of the learning phase can explain as two random 

student p and q are selected form the class in such a way that 𝑝 ≠ 𝑞and their fitness 

is evaluated to see if 𝐹௣ < 𝐹௤ then, 

𝑋௡௘௪
௣

= 𝑋௢௟ௗ
௣

+ 𝑟ห𝑋௢௟ௗ
௣

− 𝑋௤ห 

otherwise 

𝑋௡௘௪
௣

= 𝑋௢௟ௗ
௣

+ 𝑟ห𝑋௤ − 𝑋௢௟ௗ
௣

ห 

 

Eq. (1.16) 

 

Here r is a random number within a range {0,1}. The position of student p is adjusted 

toward q within the search space for 𝐹௣ > 𝐹௤ else the position of p is adjusted away 

from q. in either case p tries to improve itself until the constraints are not violated. 

1.5 Artificial intelligence 

Artificial Intelligence (AI) is a branch of computer science concerned with making 

computers act more like human beings. It was first introduced by in workshop held in 

Dartmouth college. It is a computational method attempting to simulate human 

cognition capability through symbol manipulation and symbolically structured 

knowledge bases to solve engineering problems that defy solution using conventional 

methods. It is a specialized system to understand intelligent entities, construct them, 

and make the process of decision making simple, quick, and efficient. 

In general, there are two types of machine intelligence: hard computing and soft 

computing methods. Hard computing, which is based on binary logic, crisp systems, 
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and numerical analysis, requires a precisely stated analytical model and is capable of 

producing precise answers. Soft computing differs from conventional computing in 

that, unlike hard computing, it can deal with ambiguous and noisy data, incorporates 

stochastic information, and allows parallel computations. Soft computing is based on 

fuzzy logic, neural nets, and probabilistic reasoning; where the methods can evolve 

their programs and yield approximate answers [2]. Soft computing is commonly 

considered a synonym of computational intelligence (CI). CI or soft computing can 

be expressed by the capability of a computer to learn a specific task from sample data 

or experimental observation. Mathematical or conventional modeling is useless in 

many complex real-life problems due to factors such as the complexity of the 

processes for mathematical reasoning, uncertainties during the process, and the 

stochastic nature of the process. The set of nature-inspired computational techniques 

defining CI provides solutions for such problems CI uses a combination of 

supplementary techniques such as artificial neural networks, fuzzy logic, learning 

theory, evolutionary computing, and probabilistic methods, and is capable of solving 

and approximating nonlinear problems while introducing human knowledge into the 

areas of computing. There are other machine intelligence apart from CI and SI such 

as Big data and Data mining. All these are the subset of AI to serve the different 

purposes of different fields. Related to civil engineering, we need to study about deep 

learning, ANN, fuzzy logic, and pattern recognition [47].  



 
 

14 
 

 

Figure 4. The interrelation of different intelligent computational technique 

 

In the field of civil engineering, it covers a vast area for human benefits especially in 

engineering design and optimization, structure health monitoring system, 

construction management and can solve complex problems to the level of experts by 

imitating the experts. The traditional methods for design, modeling, optimizing 

complex structure systems and manual observation of activities are difficult, time-

consuming, and prone to error, so, AI helps in automated data collection and data 

analysis techniques to improve several aspects of construction engineering and 

management for productivity assessment, safety management, idle time reduction, 

prediction, risk analysis, decision-making and optimizing construction costs. AI 

methods that are emerging in recent areas are namely Machine learning (ML), 

Pattern recognition (PR), Deep learning (DL), Swarm Intelligence, Artificial neural 

network (ANN), fuzzy logic, decision tree [2]. Some of them are discussed below. 

1.5.1 Pattern recognition  

Pattern recognition (PR) is a technique in which the main goal is to classify objects 

into several classes or categories. The objects, depending on the applications, could 

be images, signals, handwriting, speech, or measurements to be classified [35, 36]. In 
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PR, a pattern is represented by a set of features. Concepts from statistical decision 

theory are used to establish decision boundaries between pattern classes. The 

recognition system in PR consists of two modes, namely learning (training) and 

classification (testing). There has been a growing interest in the application of pattern 

recognition (PR) to structural engineering for purposes such as structural health 

monitoring (SHM)/damage detection, earthquake engineering and seismic design, 

structural reliability, structural identification, and performance evaluation. The most 

common use of PR in structural engineering has been for SHM and damage 

identification. 

1.5.2 Deep learning 

Deep learning (DL), a branch of machine learning, is composed of networks that can 

learn unsupervised from unstructured/unlabeled data. DL architecture aims to learn 

the feature representation of the input data. DL is based on deep neural networks, i.e., 

neural networks with more than one hidden layer. In such an architecture, increasing 

the number of layers results in a deeper network. Examples of DL architectures 

include convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

auto encoders, deep belief nets, etc. there has been a growing interest in the use of 

deep learning, e.g., convolutional neural networks (CNNs) for structural engineering 

applications, mainly in structural health monitoring (SHM). The application of CNNs 

is very new in the field of SHM and damage detection. CNN's within the context of 

SHM is defined as learning and extracting optimal features and classification using 

learned features. CNN's are primarily designed for two-dimensional signals (e.g., 

images, video frames, etc.), thus leading to an efficient image recognition method. 

Therefore, CNNs are categorized and used as vision-based SHM techniques in which 

dataset are images captured at various stages of the structure being monitored. 

1.5.3 Machine learning  

Machine learning (ML) is a major subfield of artificial intelligence dealing with the 

study, design, and development of algorithms that can learn from the data itself and 

make predictions using learned data. It refers to the capability of computers to learn 

without being explicitly programmed. ML-based models can be predictive or 
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descriptive to achieve knowledge from the data. The scope and potential of ML are 

much more general than other AI methods, although it is a subset of AI and used in 

various disciplines of engineering and technology. The application of machine 

learning methods has been increasingly adopted over the last decade for modeling 

real-world problems concerning structural engineering. This is because of their 

enormous capacity to capture relations among input and output data that are 

nonlinear or complicated to formulate mathematically. The first uses of ML 

techniques in structural engineering have dealt with problems such as the 

development of management tools for structural safety and information acquisition 

for the design of steel members. In general, ML methods have been used for SHM 

and damage identification, optimization, performance evaluation, structural 

reliability, and reliability assessment, and structural parameter identification e.g., 

modeling material properties of concrete. Among these, SHM and concrete property 

modeling are the uses to attain the most attention whereas there has been very little 

work in optimization during the last decade. The application and advantages of 

machine learning in optimization has been left to explore [2] [37]. 

 

Figure 5. Machine learning methods 

Machine learning methods are categorized into 3 forms as illustrated in figure 5. 
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Reinforcement learning: In reinforcement learning, or learning with a critic, no 

information is given regarding the desired category signal or explicit goals. 

Reinforcement algorithms are forced to learn optimal goals through trial and error. 

To maximize the model’s performance, reinforcement learning allows an algorithm 

to determine the ideal behavior within a specific context. The machine algorithm 

receives a numerical reward as a reinforcement signal encoding the success of an 

action’s outcome. The goal for the algorithm is then to learn to select actions 

maximizing the accumulated reward over time [2]. The classification of regression 

methods is shown in figure 6. 

 

 

Figure 6. Reinforcement learning methods 

 

Unsupervised learning:  Unsupervised learning is the training of the machine 

algorithms using information that is neither classified nor labeled and allowing the 

algorithm to act on that information without guidance. Here the task of the machine 

is to group unsorted information according to similarities, patterns, and differences 
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without any prior training of data. Unlike supervised learning, no teacher is provided 

that means no training will be given to the machine. Therefore the machine is 

restricted to find the hidden structure in unlabeled data by it-self, methods of 

unsupervised learning have been shown in figure 7. 

 

Figure 7. Unsupervised learning methods 

Supervised learning: Supervised learning as the name indicates the presence of a 

supervisor as a teacher. Supervised learning is a learning in which we teach or train 

the machine using data that is well labeled which means some data is already tagged 

with the correct answer. After that, the machine is provided with a new set of 

examples (data) so that a supervised learning algorithm will analyze the training data 

(set of training examples) and produces a correct outcome from labeled data. 

Supervised learning is done by 2 methods, regression, and classification. Under 

regression, we have linear regression, nonlinear regression, neural network, etc. For 

classification, we have the Bayesian method, k-nearest neighbor, decision trees 

metric learning, etc are shown in figure 8. 
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Figure 8. Supervised Learning methods 

 

In this study, to improve the search space of the teaching-learning algorithm machine 

learning in the form of linear regression by fitting the curve of extrapolation of the 

predicted value. The basic equation for linear regression fitting is as follows. 

𝑦 = 𝛼 ± 𝛽𝑥 ± ∆ Eq. (1.17) 
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The relationship between 𝛼 and 𝛽 is unobserved and the model that is used to 

underlie that is called the linear regression model. The goal is to find the best-suited 

value of 𝛼௡௘௪
௜  and 𝛽௡௘௪

௜  from the predicted value with minimum residual ∆ which is 

subjected to minimum for 𝛼௡௘௪
௣

, 𝛽୬ୣ୵
௣

, 𝛼௡௘௪
௤

, 𝛽௡௘௪
௤

, 𝛼௡௘௪
௥ , 𝛽௡௘௪

௥   from initial. 

∆= 𝑚𝑖𝑛 ෍ (𝑦௡௘௪
௜ − 𝛼 − 𝛽𝑥௡௘௪

௜
௡

௜ୀଵ
)ଶ 

Eq. (1.18) 

𝛽௡௘௪
௜ =

∑ (𝑥 − 𝑥௡௘௪
௜ )(𝑦 − 𝑦௡௘௪

௜ )௡
௜ୀଵ

∑ (𝑥 − 𝑥௡௘௪
௜ )ଶ௡

௜ୀଵ

 

 

 
Eq. (1.19) 

 

There are some predicted values which have do not fit and some fit perfectly, the 

number of perfectly fitted values tells the applicability and effectiveness of the linear 

regression model. The predictive model generates the initial value on the same 

principle as of the TLBO between lower and upper limits while following the 

constraint violation.  

1.6 Objective 

The objective of this thesis can be classified into three parts. 

 The first objective of this study is to develop a MATLAB script data for the 

geometry and properties of selected truss and use that data in the MATLAB 

model which consist of a script of ML and meta-heuristic algorithm.  

 The second objective of this study is to successfully optimize the selected 

model using the developed model.    

 The third objective is to validate the result of the developed ML model with 

previously available literature to validate the application of ML in the field of 

optimization that could evolve to be applied in a more complex function.   
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Structure optimization problems are generally multi-objective in nature which can be 

solved by many different algorithm approaches such as metaheuristic algorithm, 

derivative-free optimization algorithm (heuristic algorithm) and gradient-based 

methods. Metaheuristic algorithms are the most adopted method in recent literature 

because of their simplicity of code and implementation. These algorithms are 

inspired by natural phenomena. Examples of metaheuristic algorithm are particle 

swarm optimization (PSO), genetic objectives (GP), teaching-learning based 

optimization (TLBO), symbiotic organism search (SOS), Jaya algorithm, water wave 

optimization (WWO), big bang big crunch (BB-BO), whale optimization algorithm 

(WOA), evolution algorithm (EA) and their respective enhanced version are used in 

recent works of literature [34]. 

Particle swarm optimization is the algorithm that is inspired by natural phenomena of 

the social behavior of animals such as fish schooling, insect swarming, and bird 

flocking. Whale optimization, ant colony optimization, artificial bee colony 

optimization, and firefly optimization algorithm are swarm-based optimization 

algorithm. This algorithm is used for the global optima for various types of arbitrary 

problems. It was introduced by Kennedy and Everhart in 1995. It is a simulation of 

graceful and unprecedented choreographs of birds flock, the simulated resulted came 

to be a stochastic population-based evolutionary computer algorithm [7]. In the study 

by Zhengtong et al. [4], which aims to optimize the layout of a truss (topology 

optimization) using the improved version of particle swarm optimization. They also 

used a concept of using multi-material in a truss structure by using the special type of 

steel in different parts of the truss. Steel with different strength and mass were used 

in different parts which were under different loading condition. To determine the 

efficiency of the developed algorithm zhengtong et al. performed a trial on 15, 39, 

and 47 bar elements problems. In 15-bar element problem zhengtong et al. compared 

their result with a previously developed version of PSO and variants of evolutionary 

algorithms and found that their algorithm gave 3-10% better result and in some cases 

comparable result in terms of optimization. In the case of the 47-bar element 

problem, a comparison was done with the result of a previously developed version of 

PSO and variants of evolutionary algorithms and it was found that the present 
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algorithm gave 2.7 to 7% better result and in some cases comparable result. In the 

case of the 39-bar element, their algorithm performed better than evolutionary 

algorithms. In an overall comparison, the result obtained was found to be the better-

optimized structure in terms of mass and hence cost, having optimum strength. In the 

study by Mortazavi et al. [5] a newly developed optimization algorithm namely an 

interactive search algorithm (ISA) was used and the result was compared by 

previously existing meta-heuristic algorithms. The interactive search algorithm (ISA) 

was developed by closely studying and use of an affirmative feature of PSO with the 

pairwise knowledge sharing mechanism of TBLO. The best of both algorithms were 

merged. The hybrid algorithm was tested on previous problems and validated by 

other pre-developed meta-heuristic algorithms. The result of this research was 

compared with BB-BC, ABC, TLBO, mTLBO, colliding bodies optimization and its 

variant (CBO, eCBO), flower pollination optimization (FPA), and previously 

developed version of PSO for 25, 72, 200 bar truss problem and 582 bar tower 

problem. It was found from the comparison that ISA gave 6.5-8% better results than 

other algorithms as well as their parent algorithm. It was also noted that ISA was 

better than its parent algorithm in terms of computation cost and searchability. ISA 

was able to avoid getting stuck on local minima as effectively as one of its parent 

algorithm TLBO and optimize the elements of the truss as effectively as iPSO. The 

best of both algorithms were used to get a better hybrid algorithm. Kaveh et al. [6] 

too used a hybrid algorithm with a combination of particle swarm optimization and 

chaos theory. It was the multi-phase algorithm in which the first phase was to control 

the parameter value by chaos theory and the second phase was for local search ability 

by particle swarm analysis. For spatial 24-bar truss problem elements were divided 

into 8 groups, the result of CSP was compared with previously developed versions of 

PSO, ACO, BB-BC, GA, and CAA. CSP took 350 iteration and 17500 analyses 

which were about 28% more than other algorithms, in this CSP outperformed PSO 

and BB-BC. For the spatial 72-bar truss, problem elements were divided into 16 

groups, the result of CSP was compared with GA, PSO, SAHS, BB-BC, and 

outperformed GA. For planar 200-bar truss problem elements were divided into 29 

groups, the result of CSP was compared with GA, self-adaptive harmony search, 

CMLPSA. CSP took 317 iteration and 31,700 analyses which were also 12% more 
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than others. For spatial 942-bar tower truss problem elements were divided into 59 

groups and results were compared with GA, PSO, BB-BC, HBB-BC, and gave 

.072% to 29% better result than others. Optimization of a mass of truss structure was 

successfully done by Gomes et al. [7]. Frequency constraints which turn to be 

conflicting with mass optimization at lower bound were addressed by the use of 

particle swarm optimization. On comparing with other approaches with the solved 

examples it was found that for 10-bar, 37-bar, 72-bar truss problems present 

algorithm was not able to give as effective result as in the compared literature but 

when compared for 52-bar truss problem it was able to produce better result than 

other literary works. While swarm optimization was found to give heavier structure 

than compared literature, the results were acceptable from the engineering point of 

view and swarm optimization was found to advantageous to be working with 

population of random parameters and required less function evaluation as compared 

to other meta-heuristic algorithms used in previous literature works. 

Ant colony optimization is a nature-inspired algorithm that is based on the process of 

an ant navigating towards the food source from their nest leaving the trail behind for 

other ants to follow. The intensity of trial defines the best result as the most intense 

trailed path will be most followed by other ant leaving individual trails. This 

phenomenon is used in the field of optimization by creating an artificial trial that can 

be followed by the latter population. The most trailed path is considered to lead 

towards the best result.  In the research work by Camp et al in 2004 and 2005 [10] 

[11] same methods were used for designing space frame and steel frame. In 

comparison with the GA, TSA and other methods on various examples it was found 

that ACO gave better results. 

Artificial bee colony optimization is the algorithm that is inspired by the behavior of 

female honey bee whose task is to forge the nectar from the food source. The female 

bee looks for the potential food source which represents the possible solution. Bees 

are divided into three categories, employed bee, unemployed bee and scout bee. 

When a bee finds a food source then she is termed as employed bee, which exploits 

the food source and shares the information of food source to unemployed bee. 

Unemployed bee either follows the employed bee on the basis of waggle dance or 
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search for food source. The scout bee abandons and then looks for new food sources. 

The food source with the most employed bee is termed as best solution. This process 

is iterative in nature and if no further improvement is seen than the food source is 

discarded. This process moves forward towards best solution in random fashion and 

converges at best solution. In the research work by Sonmez [12] artificial bee colony 

with adaptive penalty function was used on benchmark problem of 10-bar, 18-bar, 

22-bar, 72-bar and 200-bar truss. A comparison of the result of this benchmark 

problem was done with harmony search, particle swarm optimization, annealing and 

ant colony optimization. It was found from the result that artificial bee colony gave 

structurally sound result and had global approach and does not require evaluation of 

gradient and constraint functions. This made artificial bee colony one of the preferred 

methods of choice. 

Whale optimization is also a nature-inspired algorithm that is based on the swarm-

based optimization in which the hunting behavior of humped back whale is simulated 

on the basis of two methods, shrinking circle and spatial bubble-net feeding 

maneuver. In the research work by Kaveh et al [13] a modified version of WO was 

used. A modification was done to standard version in way that if at the selected 

position the reliability was less than 50% then the new position was selected. An 

enhanced version of WO was used on 72-bar and 582-bar spatial truss and the results 

were compared with the result of particle swarm optimization and big bang-big 

crunch method and EWO was found to be the best robust method to give the lightest 

volume in an independent run.  

The evolution of species is the natural process and evolutionary algorithms are 

inspired by the process of evolution and mutation which is based on the theory 

suggested by Charles Darwin. In this algorithm initial population is mixed with each 

other to produce a mutated population and the survival of the fittest that is the 

population that gives the best result is selected.  The fitness of the organism also 

ensures the adaptation of the organism under different conditions. In the research 

work by Bureerat et al. [14] differential evolution algorithm was used on 10-bar, 

25-bar, 72-bar, 200-bar truss benchmark problem. The result of this study was 

compared with artificial bee colony, TLBO, BB-BC and other meta-heuristic 
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algorithms. It was found that from the comparison that TLBO and the present 

algorithm performed better than other algorithms and gave structurally acceptable 

structure. In the research work by Ahrari et al. [15] evolution strategy was used on 

18-bar and 77-bar truss benchmark problem and it was found that ES algorithm was 

performed with the local search and resizing of elements.   

Genetic programming is the optimization algorithm that is based on nature’s 

principle of genetic diversity. When an evolution algorithm is allowed to evolve on a 

large parameter then that strategy is termed as genetic programming. Programming is 

done by simulating the genetic tree as the binary program in which leaves and 

branches represent the functions and terminals. The binary operation, standard 

program, logic and custom functions are set under functions and constraints, 

variables and specific quantities are set under terminals. GP employs the crossover 

and mutation to explore the search space and find new solutions in every generation. 

Genetic programming works on Darwin’s theory of survival of the fittest [10]. A 

weight and geometry optimization of truss-z system was done by Zawidzki et al.[16] 

by using NSGA. A comparison was done of weight and geometry optimization. 

Optimization of sizing and topology of truss was done by the minimization of mass 

in the study by Assimi et al. [17]. Minimization of mass results in the optimum 

cross-sectional area and connectivity of joints. The structure was kept kinetically 

stable under maximum allowable stress and deflection. The genetic programming 

was capable of identifying redundant members and joints. When compared to the 

results available in literature work on conventional method, GA, harmony search 

algorithm, swarm optimization, ACO and other meta-heuristic algorithms, the 

genetic programming gave relatively lighter truss members. The comparison was 

done for 10 elements with 6-joint truss problem in two cases with a difference of 

applied load and load joint method, it was found that for case 1 SOGP gave 0.01%-

7.35% better result than other algorithms and for case 2 it gave 4.63%-9.49% better 

result. The comparison was also done for 17- elements problem and 39-elements 

problem respectively to get 0.21%-1.16% better result than compared method for 17-

element problem and 0.10%-2.39% for 39-element problem respectively, however 

for 39-element SOGP gave 0.07% heavier than ACO. Improved version of genetic 
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programming was used in the literature work of Togan et al. [18]. The adaptive 

approach of genetic programming was used with improvement in penalty functions. 

The improved version of GP was tested on previously solved problems in the other 

works of literature to give a better result than the parent algorithm. It was able to get 

a global solution for small problems. A 112-bar dome was analyzed and compared 

with other variants of genetic algorithm, it was found that present study was able to 

give better results in terms of volume and area when 3 member groups were 

analyzed. A 200-bar element was analyzed by using different penalty functions that 

were obtained from a previous genetic algorithm to give similar results by a varying 

number of generations. The combined approach of two methods was also done by 

Cazacu et al. [19] in which optimization was done by GP and stress-displacement 

constraints analysis was done by the finite element method. FEM and GP were 

implemented in MATLAB. Results were compared with MATLAB toolbox GPLAB 

and other literary works. This approach gave much faster computational speed and 

better solutions. In the literature work by Jenkins [20] it was suggested that the 

implementation of GP was easy when compared to other methods of optimization. 

Teaching-learning based optimization is the meta-heuristic algorithm which is a 

population-based search space method. It is the simulation of teaching-learning of 

class between the teacher and learner. It was first introduced by Rao[47]. The 

performance of the learner is dependent on the teacher and a good teacher produces a 

good class [14]. A modified TLBO algorithm approach was used by Baghlani et al. 

[21]. The efficient handling of constraint was used by mapping the whole population 

into feasible space. This modified approach enhanced the ability of developed 

algorithms to give feasible optimal design. There were two main objectives of this 

research first, to efficiently handle the constraint for which algorithm was modified 

and secondly, to reduce the number of analyses required for reaching the optimal 

solution. Along with this modified algorithm (TLBO-MS) two other modified 

algorithms which were modified by using two other constraint handling method 

namely, penalty function (TLBO-PF) and fly back (TLBO-FB) were studied. The 

result of TLBO-MS along with results of TBLO-PF and TLBO-FB were compared 

with different available works of literature with different approaches using various 
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examples. Comparison was done- for 10-bar planar truss under two cases, for 25-bar 

spatial truss, for 72-bar spatial truss, for 120-bar spatial truss with BB-BC, PSO and 

its derivatives, GA,ACO,ABC,CBO, improved version of harmony search, TBLO 

and its improved versions, to determine whether the optimal point given by TLBO-

MS was structurally acceptable or not. It was found by the comparison that TLBO-

MS gave structurally acceptable results which were either slightly heavier or lighter 

by other methods and also it did not give any constraint violation. The TLBO-MS 

performed better than TLBO-PF, TLBO-FB in terms of weight of members. When 

comparison was made on number of structural analyses required, TLBO-MS 

performed better than other compared algorithms and other variations of its parent 

algorithm (TLBO-PF, TLBO-FB). Tejani et al. [22] and Savsani et al. [23] both 

tried to implement the improved version of TLBO, HTS, WWO, PVS in their 

research and compare them of the basis of benchmark problems which were solved 

in the previous works of literature. Savsani et al. used the benchmark problem form 

previous literature to optimize the topology of 24-bar truss problem, 20-bar truss 

problem and 72-bar 3-D truss problem. While Tejani et al. performed benchmark 

problem to optimize topology of 10-bar, 15-bar, 25-bar and size and topology of 39-

bar problem form literature works of other researchers on PSO, TLBO, BB-BC, HS, 

ABC, ACO, PVS and its improved version and other meta-heuristic algorithms. Both 

Savsani et al. and Tejani et al. got similar results in which improved version of PVS 

got better results followed by PVS and improved version of TLBO. In overall 

analysis it was found that improved versions of each algorithm performed better than 

their parent algorithm and gave structurally acceptable results when compared with 

other literature work. Farshchin et al. [24] used modified TLBO optimization 

algorithm. The modification was made by introducing the multi-class teaching and 

learning ability in two-stage process. In first stage multiple classes with learners were 

introduced and teaching was done and when a predefined level of learning is 

achieved then the best student from each class is taken and new class with these best 

performers is introduce and at second stage this newly formed class is used for local 

search. This two-stage modification increases the exploration capability which in 

turn increases the search efficiency of the algorithm. Modified algorithm was tested 

on benchmark problems that were present in the literature on PSO, GA, HS, FA, 
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CBA, improved version of BB-BC, swarm-based meta-heuristic algorithms and 

results were compared with the same. The benchmark problems were of 10-bar truss, 

37-bar truss, 52-bar truss, 72-bar truss, 200-bar truss problems. As a result, it was 

found that for MC-TLBO performed 0.01% for 10-bar problem and 0.1% for 52-bar 

truss better than HS and 0.06% for 72-bar truss better than GS. For 37-bar truss and 

200-bar truss topology optimization was done in which it performed comparable to 

TLBO and gave structurally acceptable results. In overall comparison the strength 

was MC-TLBO was to get at the optimal result in a fewer analysis than other 

compared literature methods and MC-TLBO proved to be faster than other meta-

heuristic methods. Camp et al. [26] also used a modified version of TLBO; 

modification comes in way that search population was divided into the small group 

consisting of 75 members. This modification enhances the ability of algorithm to 

deal with population of large space and also increases the efficiency of algorithm. 

Benchmark problems of 10-bar cantilever truss, 25-bar space truss and 72-bar space 

truss. These benchmark problems were taken from the literature work of GA, ACO, 

HPSO, BB-BC, ABC and its improved version, PSO, HS and its improved version. 

On comparison of result it was found that for 10-bar cantilever truss and 25-bar 

space truss developed algorithm gave structurally acceptable result which was 

slightly heavier or lighter with compared literature. For 72-bar space truss modified 

TLBO produced lightest result than other compared methods in the compared 

literature. In overall result it was found that modified TLBO required less 

computational effort than other methods and was more efficient in terms of analysis 

required to reach the optimal design. Application of a teaching-learning based 

algorithm (TLBO) was done in Degertekin et al. [27]. It was applied to the 

examples in the literature and results were compared with them. It was found that the 

optimized truss produced by the TLBO was slightly heavy but required less 

structural analysis. TLBO was applied with the strength and displacement constraints 

provided in accordance with the AISC in the literature work by Togan [29]. The 

result found to be comparative to the other algorithms with independency on the 

number of parameters and has a simple numerical structure. 
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The symbiotic organism's search (SOS) algorithm is also a nature-inspired algorithm. 

The basic concept of this algorithm is the interdependency of the symbiotic 

organism. The simulation of this used in computer programs to find global optima. In 

the comparative study by Tejani et al. multi-objective modified adaptive symbiotic 

organism search (MOMASOS) was found to give best mean values when compared 

multi-objective adaptive symbiotic organism search (MOASOS), multi-objective 

symbiotic organism search (MOSOS), multi-objective ant colony system (MOASC), 

multi-objective adaptive search (MOAS) when compared in the analysis of a 10 bar 

truss, a 25 bar space truss, a 60 bar-ring truss, a 72 bar truss, a 942 bar tower truss 

respectively [30]. This study of Tejani was the extension of his earlier work in which 

comparison SOS and MSOS were done with other meta-heuristic algorithms and 

MSOS was found to be superior to others and its parent algorithm [31]. 

In the study by Afshari et al. [32] a comparison of 6 different algorithms was done, 

namely multi-objective gradient-based algorithm, multi-objective derivative-free 

optimization algorithm, multi-objective genetic algorithm, Non-dominated sorting 

genetic algorithm-III, multi-objective particle swarm optimization, and a random 

method for the optimal design of RC beam. The efficiency of a multi-objective 

gradient-based algorithm was found to be moreover heuristic and meta-heuristic 

algorithm. 

JAYA algorithm is the algorithm which was developed recently by Rao et al.[46] it is 

the meta-heuristic approach towards the optimization. It is also a population-based 

search algorithm like TLBO. This algorithm is based on the concept that one should 

move towards the best result and ignore the worst result. The search process is to 

move towards the best design and move away from the worst design. This algorithm 

has no algorithm-specific parameters rather it has population and iteration as a 

parameter of optimization. Jaya algorithm moves towards the best design in every 

iteration. For the optimization of the 3-D structure, a study by Tayfun et.al [33] was 

done on a benchmark problem of dome-shaped 120-bar element truss using the Jaya 

algorithm with the frequency constraints. For the optimization of the 3-D structure, it 

is important that the algorithm should be developed under the constraint of 

frequency. The result of this study was compared and validated by other algorithms 
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such as CBO, PSRO, DPSO, SOS-ABF. The benchmark problem was also optimized 

in the previous works of literature. In the comparison of result it was noted that Jaya 

algorithm was found to be 01%-2% better than other algorithms and outperformed 

other algorithms in terms of efficiency. Degertekin et.al [34] used a modified 

version of the Jaya algorithm namely DAJA. This modified form of Jaya algorithm 

was under two constraint stress and displacement to perform a discrete optimization 

of the truss under discrete sizing, layout, and topology. In this study of Degertekin 

et.al the native behavior of the Jaya algorithm was changed to follow a descent path 

adjacent to every solution and provide good quality test results. Benchmark problems 

of 10-bar planar truss, 25-bar tower truss, 47-bar power line tower, 52-bar planar 

truss, 72-bar spatial truss, 200-bar planar truss, 942-bar spatial truss were compared 

with HPSO, DHPSACO, CSS, TLBO, CBO, AFA, WCA, IMBA, HHS, aeDE, SA, 

SGA, ECS, BI, GA, ESASS. The finding of the study showed that DAJA produced 

very comparable results without violating the optimization constraints. It was also 

noted from the result that modified JAYA took considerably less structural analysis 

run to give converging point or optimum result and proved itself to be more efficient 

than the best one available one i.e. TLBO. In a previous study by Degertekin et.al 

[35] Jaya algorithm was used on the widely available problems in the literature. The 

result this algorithm for benchmark problem of 200-bar planar truss, 942-bar spatial 

tower truss, 1938- bar tower for sizing-layout optimization of truss and 25-bar 

transmission tower, 45-bar planar truss and 47-bar power line truss for sizing 

optimization was pitched against the result of previous researchers methods of 

optimization which were HBB-BC-LS, BB-BC, HHS-LC, HHS, ABC-AP, SAHS, 

TLBO, MSPSO, CA, FFA, FPA, WEA, ES, GA, HPSSO, HPSACO to get a 

comparative analysis. This comparison was done over 3 different parameters that 

were minimum weight, standard deviation, and optimized weight. Jaya algorithm 

gave a very comparable result with other meta-heuristic algorithm and in some cases 

it was able to reduce the weight of truss beyond what other algorithms had achieved. 

The main strength of jaya algorithm was to reach the optimal point with less 

structural analysis. It was a point to note that in all the studies on the Jaya algorithm, 

the algorithm was developed in the MATLAB coding platform.  
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In the optimization of truss by means of topology optimization which gives a free 

form approach to designing an efficient structure layout, the optimization algorithm 

is known to give optimum results that are supported by various works of literature. It 

is also well known that oversimplification of underlying structure optimization 

formulation leads to the impractical and instable structural solutions. The 

optimization approach is commonly to minimize the liner stain energy or minimize 

the mass of the truss element. The optimized result comes out to be a thin member 

that cannot resist yielding or local buckling or a member with un-braced hinges that 

destabilized the structure. In the research work by Nwe et.al [36] it was pointed out 

that the optimized truss was unstable. In their work new algorithm was developed 

that incorporated the yield strength and stability limit constraints in the formulation 

of the optimization algorithm. The new algorithm was based on the previous work of 

Cheng & Guo that is the Epsilon Continuation Approach and Disaggregated 

Formulation by Achtziger. The newly developed algorithm was tested on a simple 

truss system and was validated by the above-mentioned work. The resulting 

algorithm gave the optimized truss that was stable under stress, local buckling, and 

global stability constraints, leading to solutions that were far more structurally 

relevant. 

Machine learning is the ability of a computer algorithm to learn from previous 

experiences without being programmed further. In structure engineering repetitive 

analysis and designing are done for similar structures with defined acting forces and 

constraints. This pattern of iteration is followed in the optimization method. To 

overcome this, machine learning can be used as a tool for learning from previous 

results. In the study by Zeynep et al. [37] optimization of the space, the frame was 

done using a machine learning method. In this study, optimization was done with the 

use of the artificial neural network (ANN) and finite element analysis (FEA). To 

train the algorithm, an example structure was developed by the iterative method and 

these structures were optimized. The objective of the study i.e. to validate the 

optimization by machine learning method was achieved and this method itself proved 

to generate less error. Lorenzo [38] showed an approach to optimize the connection 

of steel structure using machine learning. It was found in the study of Lorenzo that 
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optimized connections were comparable with those of manual design while using 

fewer materials. Cost optimization of the reinforced concrete frame was done by 

Bekas et al. [39]. In this study, the optimization was performed by an evolutionary 

algorithm and the optimized result was subjected to a predictive modeling algorithm 

to develop a predictive model. The result of this study showed that the cost 

prediction of the optimal design of the structure is possible. In the research work by 

Tamura et al. [40] machine learning algorithm was used for the optimization of 

placement of bracings of steel frame building. In this research simulated annealing 

was used with machine learning to reduce the computational time and cost of 

optimization process. Machine learning algorithms used were binary decision tree 

(BDT) and support vector machine (SVM). Results of SA with and without machine 

learning algorithms were compared 
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2.1  Inference of literature review 

1. The original form of any algorithm was mutated and improved to get a better 

result against other algorithms and their parent algorithm. 

2. The trend to the development of all new algorithms has seen a significant 

dropping in recent literature. The improved version of the pre-existing 

algorithm was predominant over the development of the new algorithm. 

3. The PSO was found to be lacking in control of initial parameter values as 

they were difficult to define. It was found that PSO showed premature 

convergence for the iterative process and was also found to be stuck at local 

optima for complex and high dimensional space. 

4. In the original approach of genetic programming and other forms of 

evolutionary algorithm, it was found that they were very much dependent on 

the initial design. The optimal solutions generated by the genetic 

programming varied for every iteration. 

5. When compared with other optimization methods TLBO required less 

iteration to reach the optimal result but it gave a slightly heavier result. It 

performed better for high dimensional space. 

6. The gradient-based optimization method was found to susceptible to get 

stuck at local minima and was inefficient for high computational complex 

problems.  

7. A combination of machine learning and an evolutionary algorithm can be 

used to keep a check on the violation of local and global constraints resulting 

in a safer structure while reducing the number of structural analyses [32] 

[36]. 

8. The hybridization of meta-heuristic and machine learning algorithms will be 

able to solve complicated problems with less iteration. With the use of 

hybrid algorithms learning of the meta-heuristic can be improved and it can 

create a new opportunity for global learning to algorithms [36-38].  
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CHAPTER-3 

METHODOLOGY 
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3.1 Selection of truss: In the world of optimization, any new or modified 

optimization method is first applied, tested, and verified on truss and then on 

higher-order structure type. Every algorithm is initially developed for steel truss 

as it is one of the most research fields in structural engineering. Members of a 

truss are manufactured in a factory under a certain specific standard that is 

prescribed by the standard code of practice that makes their property uniform and 

enables the approach of optimization quite simple. For the study and 

development of the MATLAB model, we have selected a 10-bar cantilever truss, 

25 bar space (3D) truss also known as a transmission tower, and a 72-bar space 

truss consisting of multiple stories.   

3.2 Analysis of truss: Develop MATLAB script for the geometry and properties of 

the truss which will be imported as the data for the developed ML model  

3.3 Formulation of a machine learning model: Machine learning model will be 

formulated in 2 different stages  

3.3.1 Formulation of a Meta-heuristic algorithm for optimization of analyzed truss 

which will be based on the evolutionary algorithm (TLBO).  

3.3.2 Formulation of a Machine learning algorithm for optimization of a truss. The 

machine learning algorithm will be used with a meta-heuristic algorithm in 

the optimization of selected benchmark trusses. 

3.4 Training of algorithm: training of the ML model will be done for every truss 

problem whose training data are not available. The training process incorporated 

in the ML model which works along with the meta-heuristic algorithm  

3.5 Optimizing the truss and validating the result: Optimizing and validating the 

result generated by the ML model with the existing result from present literature 

work.  

 

Pseudo codes of met-heuristic algorithm and machine learning algorithm are 
shown in appendices II 
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Flow chart explaining the working of ML algorithm and TLBO algorithm 
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CHAPTER-4 

ANALYTICAL PROGRAM
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The three most common benchmark problems are selected. A 10-bar cantilever truss, 

25 bar space truss also known as a transmission tower, and a 72 bar space truss 

consisting of multi-story. 

4.1  A ten bar truss: the cross-section area of the truss was taken as a continuous 

variable ranging from 0.1 in2 to 35.0 in2. The unit weight of the material was 

taken as 0.1 lb/in2 and the modulus of elasticity was taken as 107.  The allowable 

maximum stress in compression and tension in any member of the truss was 

taken to be 25000 psi with a maximum deflection in vertical as well as the 

horizontal direction was taken as 2.0 inches at any node.  The configuration is 

shown in figure 9. MATLAB script for the geometry and properties of 10-bar 

truss is developed and is shown in appendices I.  

 

Table 1. Coordinates for 10 bar truss 

Joints  x (inches)  y (inches) z (inches) 

1 720 360 0 

2 720 0 0 

3 360 360 0 

4 360 0 0 

5 0 360 0 

6 0 0 0 
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Table 2. Load case for 10-bar truss  

 

 

 

4.2 A twenty-five bar truss: the cross-section area of the truss was taken as a 

continuous variable ranging from 0.1 in2 to 3.4 in2. The unit weight of the 

material was taken as 0.1 lb/in2 and the modulus of elasticity was taken as 107.  

The allowable maximum stress in compression and tension in any member of 

truss was taken to be 40 ksi with a maximum deflection in x y and z direction 

was taken as 0.35 inches at any  

Node  Fx (psi) Fy (psi) Fz (psi) 

2 0 -100000 0 

4 0 -100000 0 

Figure 9. Configuration of 10-bar cantilever truss 
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node.  The configuration is shown in the figure 10. MATLAB script for the 

geometry and properties of 72-bar truss is developed and is shown appendices I. 

 

Table 3. Coordinates for 25-bar truss 

Joints  x (inches)  y (inches) z (inches) 

1 -37.5   0.0 200 

2   37.5   0.0 200 

3 -37.5   37.5 100 

4   37.5   37.5 100 

5  37.5 -37.5 100 

6 -37.5 -37.5 100 

7 -100  100  0.0 

8  100  100  0.0 

9  100 -100  0.0 

10 -100 -100  0.0 

Figure 10. Configuration of 25-bar truss 
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Table 4. Load Case for 25- bar truss 

Node  Fx (psi) Fy (psi) Fz (psi) 

1 1000 -10000 10000 

2 0 -10000 -10000 

3 500 0 0 

6 600 0 0 

 

 

4.3 A seventy-two bar truss: the cross-section area of the truss was taken as a 

continuous variable ranging from 0.01 in2 to 3.0 in2. The unit weight of the 

material was taken as 0.1 lb/in2 and the modulus of elasticity was taken as 107.  

The allowable maximum stress in compression and tension in any member of the 

truss was taken to be 25 ksi with a maximum deflection in x y and z-direction 

was taken as 0.25 inches at any node.  The configuration is shown in figure 12. 

MATLAB script for the geometry and properties of 72-bar truss is developed and 

is shown appendices I. 

 

Figure 11. Dimension of 72-bar truss 
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Table 5. Load case for 72-bar truss 

 

 

  

Node Fx (psi) Fy (psi) Fz (psi) 

17 5000 5000 -5000 

Figure 12. Configuration of 72 bar truss with element and nodal numbering 
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Table 6. Coordinates for 72-bar truss 

 

  

Joints  x (inches)  y (inches) z (inches) 

1 0 0 0 

2 120 0 0 

3 120 120 0 

4 0 120 0 

5 0 0 60 

6 120 0 60 

7 120 120 60 

8 0 120 60 

9 0 0 120 

10 120 0 120 

11 120 120 120 

12 0 120 120 

13 0 0 180 

14 120 0 180 

15 120 120 180 

16 0 120 180 

17 0 0 240 

18 120 0 240 

19 120 120 240 

20 0 120 240 
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CHAPTER-5 

RESULTS 
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The result generated by the algorithm in this study was compared with other 

prominent meta-heuristic approaches in various literature work in terms of total 

weight, constraints violation, and no. of structural analysis for the benchmark 

problems. The comparison was done with the modified version of TLBO, Harmony 

search and its modified version, a modified version of an artificial bee colony, 

modified version of particle swarm optimization, modified version of big band-big 

crunch, and modified version of ant colony optimization in the research work of 

Baghalni et al. (TLBO-MS) [21], Camp and Farshchin (MTLBO-PF) [26], 

Degertekin and Hayalioglu (TLBO-FBM) [27], Degertekin et al. (SAHS) [28], 

Kaveh et al.(HBB-BC) [44], Li et al. (HPSO) [8], Camp (BB-BC) [45],  Kaveh et al 

HPSACO [25], Perez et al.(PSO) [9], Lee and Geem (HS) [43]. 

For the 10 bar, cantilever truss machine learning algorithm generated a viable 

solution that was slightly heavy than the result of the modified version of TLBO but 

performed better than harmony search, artificial bee colony, particle search 

optimization. When compared in terms of structural analysis ML took 4200 analysis 

which was more than TLBO-MS but it was less than other modified versions of 

TLBO, HS, ABC, PSO, BB-BC, ACO. In this case, the ant colony gave way less 

weight but violated the constraint as in table 7. 

For 25 bar transmission tower truss the ML algorithm gave a structurally acceptable 

result which was slightly better than the modified version of TLBO, HS, ABC, PSO, 

BB-BC, ACO. Machine learning took 1351 structural analysis which was minimum 

than all other methods as shown in table 8. 

For 72 bar multi-story truss ML took 1575 analysis which was less than modified 

versions of TLBO, HS, ABC, PSO, BB-BC, ACO. The machine learning algorithm 

gave a structurally acceptable result which was slightly better than modified versions 

of TLBO, HS, ABC, PSO, BB-BC, ACO as mentioned in table 9. 
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Table 7. Result of 10-bar truss 

 

 

Figure 13. Graphical representation of 10-bar truss 
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 Table 8. Result of 25-bar truss 

 

 

Figure 14. Graphical representation of 25-bar truss 
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Table 9. Result of 72-bar truss 

 

 

Figure 15. Graphical representation for 72-bar truss  

72 bar 
truss 
result 

 

Lee 
and 
Gee
m 
(HS) 
[43] 

Perez 
et 
al.(P
SO) 
[9] 

Cam
p 
(BB-
BC) 
[45] 

Li et 
al. 
(HPS
O) 
[8] 

Kave
h et 
al.(H
BB-
BC) 
[44] 

Degert
ekin et 
al.(SA
HS) 
[28] 

Degert
ekin 
and  
Hayalio
glu 
(TLBO-
FBM) 
[27] 
 

Camp 
and 
Farshc
hin 
(MTLB
O-

PF)[26] 
 

Baghal
ni et 
al.(TL
BO-
MS) 
[21] 
 

This 
study 

 

Weigh
t (lb) 

379.
27 

381.9
1 

379.
85 

369.
65 

379.6
6 

380.62 379.63 
379.6

32 
379.61

7 
379.5
261 

Wavg(l
b) 

N/A N/A 
382.
08 

N/A N/A 382.62 380.2 
379.7

59 
379.76

9 
- 

Constr
aint  

violati
on (%) 

0.21
7 

None 
Non

e 
39.0
75 

None 0.259 None None None None 

Nanalysis 
20,0
00 

8,000 
19,6
21 

12,5
000 

13,20
0 

13,742 19,709 
21,54

2 
10,000 1575 



 
 

50 
 

 

Figure 16. Convergence history of ML algorithm for 10-bar truss 

 

 

 

Figure 17. Output generated by ML and TLBO algorithm for 10-bar truss 
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Figure 18. Convergence history of ML algorithm for 25-bar truss 

 

 

 

Figure 19.Output generated by ML and TLBO algorithm for 25-bar truss 
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Figure 20.Convergence history of ML algorithm for 72-bar truss 

 

 

 

Figure 21. Output generated by ML and TLBO algorithm for 72-bar truss 
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CHAPTER-6 

CONCLUSION 
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Conclusion and future scope 

The machine-learning algorithm showed no constraint violation whereas modified 

versions of TLBO, HS, ABC, PSO, BB-BC, ACO violated the constraint at some 

point of analysis when pushed to the optimization limit. In this research work, three 

benchmark problems were optimized and the machine learning algorithm 

successfully optimized them and generated a feasible design which was as good as 

the compared methods. The advantage of ML comes in as the intelligent and 

adaptive way to reduce the search space which in turn reduces the structural analysis 

needed to reach the desired solution. ML algorithm outperforms the other meta-

heuristic algorithms and other variants in terms of robustness and always leads to a 

fully feasible solution. In future research, machine learning can be applied to other 

structural optimization and it can be used with other incapable optimization 

algorithms such as gradient-based methods and some meta-heuristics methods to 

eliminate the issues faced by them. In the future other complex and adaptive machine 

learning methods can use in the field of structural engineering as these research 

works prove the fact the machine learning can be used in the field to the structural 

design field. 
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The MATLAB script for the geometry and properties of benchmark truss problem is 
shown below. 

For 10-bar cantilever truss: 

function D=Data10 

% Design parameters for the benchmark 10-bar truss problem 

Coord=360*[2 1 0;2 0 0;1 1 0;1 0 0;0 1 0;0 0 0];  

Con=[5 3;1 3;6 4;4 2;3 4;1 2;6 3;5 4;4 1;3 2]; 

Re=[0 0 1;0 0 1;0 0 1;0 0 1;1 1 1;1 1 1]; 

Load=zeros(size(Coord));Load(2,:)=[0 -1e5 0];Load(4,:)=[0 

-1e5 0]; 

E=ones(1,size(Con,1))*1e7; 

A=ones(1,10); 

% Available sections 

AV=[0.1:0.1:35];%in^2 

%Allowable Stress 

TM=25000;%psi 

%Allowable Displacement 

DM=2;%inch 

%Density 

RO=.1;%lb/in^3 

LB=ones(1,10)*0.1; 

UB=ones(1,10)*33; 

D=struct('Coord',Coord','Con',Con','Re',Re','Load',Load','E',E

','A',A','AV',AV','TM',TM','DM',DM','RO',RO','LB',LB,'UB',UB

); 
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For 25 bar transmission tower truss: 

function D=Data25 

Coord=[-37.5 0 200;37.5 0 200;-37.5 37.5 100;37.5 37.5 

100;37.5 -37.5 100;-37.5 -37.5 100;-100 100 0;100 100 0;100 

-100 0;-100 -100 0]; 

Con=[1 2;1 4;2 3;1 5;2 6;2 4;2 5;1 3;1 6;3 6;4 5;3 4;5 6;3 

10;6 7;4 9;5 8;4 7;3 8;5 10;6 9;6 10;3 7;4 8;5 9]; 

Re=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;1 1 1;1 1 1;1 1 1;1 1 

1]; 

Load=zeros(size(Coord));Load(1,:)=[1e3 -1e4 -

1e4];Load(2,:)=[0 -1e4 -1e4];Load(3,:)=[5e2 0 

0];Load(6,:)=[6e2 0 0]; 

E=ones(1,size(Con,1))*1e7; 

A=ones(1,25); 

% Available sections 

AV=[0.1:0.1:3.4];%in^2 

%Allowable Stress 

TM=40000;%psi 

%Allowable Displacement 

DM=0.35;%inch 

%Density 

RO=.1;%lb/in^3 

LB=ones(1,25)*0.1; 

UB=ones(1,25)*3.4; 

D=struct('Coord',Coord','Con',Con','Re',Re','Load',Load','E',E

','A',A','AV',AV','TM',TM','DM',DM','RO',RO','LB',LB,'UB',UB

); 
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For 72-bar multi storey truss structure: 

function D=Data72 

Coord=[0 0 0;120 0 0;120 120 0;0 120 0;0 0 60;120 0 60;120 

120 60;0 120 60;0 0 120;120 0 120;120 120 120;0 120 120;0 

0 180;120 0 180;120 120 180; 0 120 180;0 0 240;120 0 

240;120 120 240;0 120 420]; 

Con=[1 5;1 6;1 8;2 6;2 5;2 7;3 7;3 8;3 6;4 8;4 7;4 5;5 6;6 

7;7 8;8 5;5 7; 6 8;5 9;5 10;5 12;6 10;6 9;6 11;7 11;7 12;7 

10;8 12;8 11;8 9;9 10;10 11; 11 12;12 9;9 11;10 12;9 13,9 

14;9 16;10 14;10 13;10 15;11 15;11 16;11 14; 12 16;12 

15;12 13;13 14;14 15;15 16;16 13;13 15;14 16;13 17;13 

18;13 20;14 18;14 17;14 19;15 19;15 20;15 18;16 20;16 

19;16 17;17 18;18 19;19 20;20 17;17 19;18 20]; 

Re=[1 1 1;1 1 1;1 1 1;1 1 1;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 

0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 

0 0;0 0 0;0 0 0;0 0 0]; 

Load=zeros(size(Coord));Load(17,:)=[5e3 5e3 -5e3]; 

E=ones(1,size(Con,1))*1e7; 

A=ones(1,72); 

% Available sections 

AV=[0.1:0.1:3];%in^2 

%Allowable Stress 

TM=25000;%psi 

%Allowable Displacement 

DM=0.25;%inch 

%Density 

RO=.1;%lb/in^3 

LB=ones(1,72)*0.1;UB=ones(1,72)*3; 

D=struct('Coord',Coord','Con',Con','Re',Re','Load',Load','E',E

','A',A','AV',AV','TM',TM','DM',DM','RO',RO','LB',LB,'UB',UB

); 
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APPENDICES-Ⅱ 
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The pseudo code for TLBO algorithm along with analyser function algorithm is 
shown below. 

function TLBOTruss 
global D 
 
%% Optimization parameters 
D=Data10;                                                                  % Read design parameters of the 
benchmark 10-bar truss from Data file 
TL.Itmax=200;                                                              % Maximum number of iterations 
TL.PopSize=75;                                                             % Population size 
TL.LB=D.LB;                                                                % Lowerbound row vector (LB) 
TL.UB=D.UB;                                                                % Upperbound row vector (UB) 
%% Applies Machine Learning to give design  
function guessvalue=extrapolation(ny,y,fit) 
%% Randomely generate initial designs between LB and UB 
function INITIAL  
Cycle=1; 
for I=1:TL.PopSize 
    Designs(I,:)=TL.LB+rand(1,size(TL.LB,2)).*(TL.UB-TL.LB);               % Row vector 
end 
 
%% TLBO main loop 
Best{1}=[]; 
for Cycle=2:TL.Itmax 
    %% Evaluate the designs generated in the previous iteration 
    [PObj,Obj]=Analyser(Designs); 
    %% Specify best designs and keep them 
    [Best{Cycle},Designs,PObj,WMeanPos]=Specifier(PObj,Obj,Designs,Best{Cycle-
1}); 
    %% Apply Teaching  
    
[Designs,PObj,Obj]=Teaching(TL,Designs,PObj,Obj,Best{Cycle}.GBest.Design,WMea
nPos); 
    [Best{Cycle},Designs,PObj,WMeanPos]=Specifier(PObj,Obj,Designs,Best{Cycle-
1}); 
    %% Apply Learning 
    [Designs]=Learning(TL,Designs,PObj); 
    % Plot time history of the best solution vs. iteration 
    hold on;plot(Cycle,Best{Cycle}.GBest.PObj,'b*');xlabel('Iteration');ylabel('Best 
solution');pause(0.0001) 
    % Print current best solution 
    fprintf('Cycle=%3d & Best solution=%6.8g\n',Cycle,Best{Cycle}.GBest.PObj) 
end 
 
%% Save results 
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save('TimeHist.mat','Best') 
%............................................................................................................................................................% 
 
function [PObj,Obj]=Analyser(Designs) 
 
global D 
% This function evaluates the generated designs 
for I=1:size(Designs,1) 
    D.A=Designs(I,:); 
    [~,~,~,Obj(I,1),PObj(I,1)]=ST(D); %Obj: Objective value;   PObj: Penalized 
objecive value 
end 
 
end 
function [F,U,R,WE,GOAL]=ST(D) 
 
D.A=D.A'; 
w=size(D.Re);S=zeros(3*w(2));U=1-D.Re;f=find(U); 
WE=0; 
for i=1:size(D.Con,2) 
    H=D.Con(:,i);C=D.Coord(:,H(2))-D.Coord(:,H(1));Le=norm(C); 
    T=C/Le;s=T*T';G=D.E(i)*D.A(i)/Le;Tj(:,i)=G*T; 
    e=[3*H(1)-2:3*H(1),3*H(2)-2:3*H(2)];S(e,e)=S(e,e)+G*[s -s;-s s]; 
    WE=WE+Le*D.A(i)*D.RO; 
end 
U(f)=S(f,f)\D.Load(f);F=sum(Tj.*(U(:,D.Con(2,:))-U(:,D.Con(1,:)))); 
R=reshape(S*U(:),w);R(f)=0; 
TS=(((abs(F'))./D.A)/D.TM)-1;%Tension 
US=abs(U')/D.DM-1;%Displacement 
PS=sum(TS.*(TS>0)); 
PD=sum(sum(US.*(US>0))); 
GOAL=WE*(1+PS+PD)^2;% Penalty function 
end 
%............................................................................................................................................................% 
 
function [Designs,PObj,Obj]=Teaching(TL,Designs,PObj,Obj,Teacher,WMeanPos) 
 
 
 
for I=1:size(Designs,1) 
    TF=randi([1,2],1,size(Teacher,2)); 
    Diff_Mean=rand(1,size(Teacher,2)).*TF.*(Teacher-WMeanPos); 
    NewDesigns(I,:)=Designs(I,:)+sign(Teacher-Designs(I,:)).*abs(Diff_Mean); 
end 
 
for i=1:size(Designs,1) 



 
 

68 
 

    for j=1:size(Teacher,2) 
        if NewDesigns(i,j)<TL.LB(1,j) 
            NewDesigns(i,j)=TL.LB(1,j); 
        elseif NewDesigns(i,j)>TL.UB(1,j) 
            NewDesigns(i,j)=TL.UB(1,j); 
        end 
    end 
end 
           
%% Evaluate the new designs 
[NPObj,NObj]=Analyser(NewDesigns); 
     
%% Check individuals for improvement and update the designs that are improved 
for I=1:size(Designs,1) 
    if NPObj(I,1)<PObj(I,1) 
        PObj(I,1)=NPObj(I,1); 
        Obj(I,1)=NObj(I,1); 
        Designs(I,:)=NewDesigns(I,:); 
    end 
end 
 
     
%............................................................................................................................................................% 
 
function [Designs,PObj,Obj]=Teaching(TL,Designs,PObj,Obj,Teacher,WMeanPos) 
%% This function applies teaching phase 
 
 
for I=1:size(Designs,1) 
    TF=randi([1,2],1,size(Teacher,2)); 
    Diff_Mean=rand(1,size(Teacher,2)).*TF.*(Teacher-WMeanPos); 
    NewDesigns(I,:)=Designs(I,:)+sign(Teacher-Designs(I,:)).*abs(Diff_Mean); 
end 
 
%% Check feasibility of the designs 
for i=1:size(Designs,1) 
    for j=1:size(Teacher,2) 
        if NewDesigns(i,j)<TL.LB(1,j) 
            NewDesigns(i,j)=TL.LB(1,j); 
        elseif NewDesigns(i,j)>TL.UB(1,j) 
            NewDesigns(i,j)=TL.UB(1,j); 
        end 
    end 
end 
           
%% Evaluate the new designs 
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[NPObj,NObj]=Analyser(NewDesigns); 
     
%% Check individuals for improvement and update the designs that are improved 
for I=1:size(Designs,1) 
    if NPObj(I,1)<PObj(I,1) 
        PObj(I,1)=NPObj(I,1); 
        Obj(I,1)=NObj(I,1); 
        Designs(I,:)=NewDesigns(I,:); 
    end 
end 
 
%............................................................................................................................................................% 
 
function [Designs]=Learning(TL,Designs,PObj) 
 
 
for I=1:size(Designs,1) 
    % Selection 
    A=(randperm(size(Designs,1)))'; 
    First=A(1); 
    Second=A(2); 
    if PObj(First)>PObj(Second) 
        First=A(2); 
        Second=A(1); 
    end 
    BetterDesign=Designs(First,:); 
    WorseDesign =Designs(Second,:); 
    NewDesigns(I,:)=WorseDesign+rand(1,size(Designs,2)).*(BetterDesign-
WorseDesign); 
end 
%% Check feasibility of the designs 
for i=1:size(Designs,1) 
    for j=1:size(Designs,2) 
        if NewDesigns(i,j)<TL.LB(1,j) 
            NewDesigns(i,j)=TL.LB(1,j); 
        elseif NewDesigns(i,j)>TL.UB(1,j) 
            NewDesigns(i,j)=TL.UB(1,j); 
        end 
    end 
end 
           
%% Evaluate the new designs 
[NPObj,NObj]=Analyser(NewDesigns); 
     
%% Check individuals for improvement and update the designs that are improved 
for I=1:size(Designs,1) 
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    if NPObj(I,1)<PObj(I,1) 
        PObj(I,1)=NPObj(I,1); 
        Obj(I,1)=NObj(I,1); 
        Designs(I,:)=NewDesigns(I,:); 
    end 
end 
%............................................................................................................................................................% 
function 
[NewBest,Designs,PObj,WMeanPos]=Specifier(PObj,Obj,Designs,PreviousBest) 
 
 
%% Sort new results 
[~,b]=sort(PObj);                                                          % Sort Penalized objective values 
Designs=Designs(b,:);                                                      % Sorted designs 
Obj=Obj(b,:);                                                              % Sorted objectives 
PObj=PObj(b,:);                                                            % Sorted penalized objectives 
 
WMeanPos=mean(Designs);                                                    
 
%% Find the bests 
GBest.PObj=PObj(1);                                                        % Current best 
GBest.Obj=Obj(1);                                                          % Current best 
GBest.Design=Designs(1,:);                                                 % Current best 
 
% Find current best non penalized individual 
C=find(PObj==Obj); 
if isempty(C)==1 
    NP.Obj=[]; 
    NP.Design=[]; 
else 
    C=C(1); 
    NP.Obj=PObj(C); 
    NP.Design=Designs(C,:); 
end 
 
%% Compare the current bests with previous ones 
 
if isempty(PreviousBest)==1 
    NewBest.GBest=GBest; 
elseif GBest.PObj<PreviousBest.GBest.PObj 
    NewBest.GBest=GBest; 
else 
    NewBest.GBest=PreviousBest.GBest; 
end 
 
if isempty(PreviousBest)==1 
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    NewBest.NP=NP; 
elseif isempty(PreviousBest.NP.Obj)~=0 
    if NP.Obj<PreviousBest.NP.Obj 
        NewBest.NP=NP; 
    end 
else 
        NewBest.NP=PreviousBest.NP; 
end 
%% Keep the best solutions in the population but do not repaeat them more than 
once 
K=0; 
for I=1:size(Designs,1) 
    if sum(Designs(I,:)==NewBest.GBest.Design)==size(Designs,2) 
        K=K+1; 
    end 
end 
 
if K==0 
    Designs(end,:)=NewBest.GBest.Design; 
    PObj(end)=NewBest.GBest.PObj; 
end 
 
L=0; 
for I=1:size(Designs,1) 
    if sum(Designs(I,:)==NewBest.NP.Design)==size(Designs,2) 
        L=L+1; 
    end 
end 
 
if L==0 
    Designs(end-1,:)=NewBest.NP.Design; 
    PObj(end-1,:)=NewBest.NP.Obj; 
end 
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Appendices Ⅲ 
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The pseudo code for Machine learning algorithm is shown below. 

function [PObj,Obj]=function guessvalue 

function guessvalue=extrapolation(ny,y,fit) 

ntm==size((Con),2); 

tdata=xlsread('trussdata.xls','ntm') 

selectedsheet=numcmp(nt); 

if ntm==nt 

x=ny; 

Data=y; 

p1=fit.coeff(:,1); 

p2=fit.coeff(:,2); 

X_train=train_set(:,1:end-1); Y_train=train_set(:,end); 

X_test=test_set(:,1:end-1); Y_test=test_set(:,end); 

 

Test_mdl = fitlm(X_train,Y_train); 

W=Test_mdl.Coefficients{:,1} 

 

predicted_values=predict(Test_mdl,X_test); 

mse2=sqrt(mean((predicted_values-Y_test).^2)) 

 

 

X_train=[ones(N,1), X_train]; 

 

W=zeros(size(X_train,2),1); 

W_old=ones(size(X_train,2),1); 

 

while(norm(W_old-W) > 10^-5) 

    W_old=W; 

    W = W - 0.1/N*X_train'*(X_train*W - Y_train); 

end 

predicted_values=[ones(length(X_test),1),X_test]*W; 
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mse3=sqrt(mean((predicted_values-Y_test).^2)) 

 for i=1:x 

x=i; 

guessvalue(1,i)= p1*x + p2 ; 

 end 

 figure; 

 plot(Data,'*'); 

 hold on; 

 plot(guessvalue,'-') 

 fprintf('predicition trial=%3d & predicted value=%6.8g\n', 

figure 

hold on 

scatter(X_test,Y_test) 

fplot(W(1)+W(2)*x) 

xlabel({'X_1'}); 

ylabel({'Y'}); 

title({'Linear Regression '}); 

xlim([-3 3]) 

hold off 

function [PObj,Obj]=Analyser(Designs) 

guessvalue==Best{1}; 

function 

[NewBest,Designs,PObj,WMeanPos]=Specifier(PObj,Obj,Designs,PreviousBest) 

end 

else 

 function [PObj,Obj]=INITIAL 
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