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SUMMARY 

This thesis describes a novel approach to text-to-speech synthesis (TTS) based on hidden 

Markov model (HMM). There have been several attempts proposed to utilize HMM for 

constructing TTS systems. Most of such systems are based on waveform concatenation 

techniques. In the proposed approach, on the contrary, speech parameter sequences are 

generated from HMM directly based on maximum likelihood criterion. By considering 

relationship between static and dynamic parameters, smooth spectral sequences are 

generated according to the statistics of static and dynamic parameters modeled by 

HMMs. As a result, natural sounding speech can be synthesized. Subjective experimental 

results demonstrate the effectiveness of the use of dynamic features. Relationship 

between model complexity and synthesized speech quality is also investigated. To 

synthesize speech, fundamental frequency (F0) patterns are also required to be modeled 

and generated. The conventional discrete or continuous HMMs, however, cannot be 

applied for modeling F0 patterns since observation sequences of F0 patterns are 

composed of one-dimensional continuous values and discrete symbol which represents 

“unvoiced.” To overcome this problem, the HMM is extended to be able to model a 

sequence of observation vectors with variable dimensionality including zero-

dimensional observations, i.e., discrete symbols. It is shown that by using this extended 

HMM, referred to as the multi-space probability distribution HMM (MSDHMM), 

spectral parameter sequences and F0 patterns can be modeled and generated in a unified 

framework of HMM. Since speech parameter sequences are generated directly from 

HMMs, it is possible to covert voice characteristics of synthetic speech to a given target 

speaker by applying speaker adaptation techniques proposed in speech recognition area. 

In this thesis, the MAP-VFS algorithm, which is combination of a maximum a posteriori 

(MAP) estimation and a vector field smoothing (VFS) technique, is applied to the HMM-

based TTS system. Results of ABX listening tests averaged for four target speakers (two 

males and two females) show that speech samples synthesized from adapted models were 

judged to be closer to target speakers’ models than initial speaker independent models 

by 88% using only one adaptation sentences from each target speaker. Since it has been 

shown that the HMM-based speech synthesis system have an ability to synthesize speech 

with arbitrarily given text and speaker’s voice characteristics, the HMM-based TTS 

system can be considered to be applicable to imposture against speaker verification 
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systems. From this point of view, security of speaker verification systems against 

synthetic speech is investigated. Experimental results show that false acceptance rates 

for synthetic speech reached over 63% by training the HMM-based TTS system using 

only one training sentence for each customer of the speaker verification system. Finally, 

a speaker independent HMM-based phonetic vocoder is investigated. In the encoder of 

the HMM-based phonetic vocoder, speech recognition is performed, and resultant 

phoneme sequence and state durations are transmitted to the decoder. Transfer vectors, 

which represents mismatch between spectra of input speech and HMMs, are also 

obtained and transmitted. In the decoder, phoneme HMMs are adapted to the input 

speech using transfer vectors, then speech is synthesized according to the decoded 

phoneme sequence and state durations. Experimental results show that the performance 

of the proposed vocoder at about 340 bit/s is comparable to a multi-stage VQ based 

vocoder at about 2200 bit/s without F0 and gain quantization for both coders. 
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1.1 General Background 

Since speech is obviously one of the most important ways for human to communicate, 

there have been a great number of efforts to incorporate speech into human-computer 

communication environments. As computers become more functional and prevalent, 

demands for technologies in speech processing area, such as speech recognition, dialogue 

processing, speech understanding, natural language processing, and speech synthesis, is 

increasing to establish high-quality human-computer communication with voice. These 

technologies will also be applicable to human-to-human communication with spoken 

language translation systems, eyes-free hands-free communication, or control for 

handicapped persons, and so on. Text-to-speech synthesis (TTS), one of the key 

technologies in speech processing, is a technique for creating speech signal from 

arbitrarily given text to transmit information from a machine to a person by voice. To 

fully transmit information contained in speech signals, text-to-speech synthesis systems 

are required to have an ability to generate natural sounding speech with arbitrary 

speaker’s voice characteristics and various speaking styles. In the past decades, TTS 

systems based on speech unit selection and waveform concatenation techniques, such as 

TD-PSOLA, CHATR, or NEXTGEN, have been proposed and shown to be able to 

generate natural sounding speech, and is coming widely and successfully used with the 

increasing availability of large speech databases. However, it is not easy to make these 

systems have the ability of synthesizing speech with various voice characteristics and 

speaking styles. One of reasons comes from the fact that concatenative approaches, 

which are also referred to as corpus-based approaches, generally requires a large amount 

of speech data to generate natural sounding speech, and therefore it is impractical to 

prepare and store a large amount of speech data of arbitrary speakers and speaking styles. 

For constructing such corpus-based TTS systems automatically, the use of hidden 

Markov models (HMMs) has arisen largely. HMMs have successfully been applied to 

modeling sequences of speech spectra in speech recognition systems, and the 

performance of HMM-based speech recognition systems have been improved by 

techniques which utilize the flexibility of HMMs: context dependent modeling, dynamic 

feature parameters, mixtures of Gaussian densities, tying mechanism, speaker and 
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environment adaptation techniques. HMM-based approaches in speech synthesis area 

can be categorized as follows: 

1. Transcription and segmentation of speech database. 

2. Construction of inventory of speech segments. 

3. Run-time selection of multiple instances of speech segments. 

4. Speech synthesis from HMMs themselves. 

 

Since most of these approaches are based on waveform concatenation techniques, it can 

be said that advantages of HMMs described above are not fully exploited by TTS 

systems. For example, to obtain various voice characteristics, one way is to construct 

large amounts of speech database. However, it is difficult to collect, segment, and store 

these data. Another way is to convert speaker individuality of synthetic speech by adding 

some voice conversion technique after the synthesis stage of TTS systems without using 

speaker adaptation techniques for HMMs, though voice conversion techniques are 

similar to the speaker adaptation techniques in that speech parameters of a speaker (or 

averaged parameters of speakers in training data) are converted to another speaker. 

 

1.2 Scope of Thesis 

The main objective of this thesis is to develop a novel TTS system in which speech 

parameters are generated from HMMs themselves. If speech is synthesized from HMMs 

directly, it will be feasible to synthesize speech with various voice characteristics by 

applying speaker adaptation techniques developed in HMM-based speech recognition 

area. In addition, it is expected that the speech synthesis technique is applicable to speech 

enhancement, speech coding, voice conversion, and so on. From this point of view, first, 

an HMM-based TTS system is developed in which spectral parameter sequences are 

generated from HMMs directly based on maximum likelihood criterion. By considering 

relationship between static and dynamic parameters during parameter generation, smooth 

spectral sequences are generated according to the statistics of static and dynamic 
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parameters modeled by HMMs, resulting in natural sounding speech without clicks 

which sometimes occur at the concatenation points in synthetic speech of TTS systems 

based on waveform concatenation techniques. To synthesize speech, fundamental 

frequency (F0) patterns are also required to be modeled and generated. Unfortunately, 

the conventional discrete or continuous HMMs, however, cannot be applied to modeling 

F0 patterns, since values of F0 are not defined in the unvoiced regions, that is, observation 

sequences of F0 patterns are composed of one-dimensional continuous values and 

discrete symbols which represent “unvoiced.” To overcome this problem, the HMM is 

extended to be able to model a sequence of observation vectors with variable 

dimensionality including zero-dimensional observations, i.e., discrete symbols. By using 

this extended HMM, referred to as the multi-space probability distribution HMM (MSD-

HMM), spectral parameter sequences and F0 patterns are modeled and generated in a 

unified framework of HMM. Then, a voice characteristics conversion technique for the 

HMM-based TTS system is described. This thesis adopts the MAP-VFS algorithm, one 

of successful speaker adaptation techniques, and shows that speech with arbitrarily given 

speaker’s voice characteristics can be synthesized using the HMM-based TTS system 

with speaker adaptation. 

 

For speaker verification systems, security against imposture is one of the most important 

problems. Since it can be shown that the HMM-based TTS system have an ability to 

synthesize speech with arbitrarily given speaker’s voice characteristics, the HMM-based 

TTS system can be considered to be applicable to imposture against speaker verification 

systems. From this point of view, security of speaker verification systems against 

synthetic speech is investigated, and several experimental results are reported. Finally, a 

very low bit rate speech coding technique based on HMM is described. HMM-based 

speech synthesis can be considered as the reverse procedure of HMM-based speech 

recognition. Thus, by combining the HMM-based speech recognition system and the 

HMM-based TTS system, an HMM-based very low bit rate speech coder is constructed, 

in which only phoneme indexes and state durations are transmitted as spectral 

information. To reproduce speaker individuality of input speech, a technique to adapt 
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HMMs used in the TTS system to input speech is developed, since speaker individuality 

of coded speech only depends on the HMMs used in the TTS system. 
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2.1 The hidden Markov models overview. 

The hidden Markov model (HMM) is one of statistical time series models widely used 

in various fields. Especially, speech recognition systems to recognize time series 

sequences of speech parameters as digit, character, word, or sentence can achieve success 

by using several refined algorithms of the HMM. Furthermore, text-to-speech synthesis 

systems to generate speech from input text information has also made substantial 

progress by using the excellent framework of the HMM. In this chapter, we briefly 

describe the basic theory of the HMM. 

A hidden Markov model (HMM) is a finite state machine which generates a sequence of 

discrete time observations. At each time unit, the HMM changes states at Markov process 

in accordance with a state transition probability, and then generates observational data o 

in accordance with an output probability distribution of the current state.  

An N-state HMM is defined by the state transition probability A = {aij}N i,j=1, the output 

probability distribution B = {bi(o)}N i=1, and initial state probability Π = {πi}N i=1. For 

notational simplicity,  

we denote the model parameters of the HMM as follow:  

λ = (A, B, Π). 

The below figure shows examples of typical HMM structure, 

 



 

17 
 

 

 

shows a 3-state ergodic model, in which each state of the model can be reached from 

every other state of the model in a single transition, and shows a 3-state left-to-right 

model[1], in which the state index simply increases or stays depending on time 

increment. The left-to-right models are often used as speech units to model speech 

parameter sequences since they can appropriately model signals whose properties 

successively change. 

The output probability distribution bi(o) of the observational data o of state i can be 

discrete or continuous depending on the observations. In continuous distribution HMM 

(CD-HMM) for the continuous observational data, the output probability distribution is 

usually modeled by a mixture of multivariate Gaussian distributions as follows: 

 

where M is the number of mixture components for the distribution, and wim, μim and Σim 

are a weight, a L-dimensional mean vector, and a L × L covariance matrix of mixture 

component m of state i, respectively. A Gaussian distribution N (o; μim, Σim) of each 

component is defined by 
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where L is the dimensionality of the observation data o. Mixture weights wim satisfy the 

following stochastic constraint, 

 

so that bi(o) are properly normalized as probability density function, i.e., 

 

When the observation of vector Ot is divided into S stochastic-independent data streams, i.e., O 

= [OT
1, OT

2, ...  OT
s], bi(o) is formulated by product of Gaussian mixture densities, 
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where Ms is the number of components in stream s, and wism, μism and Σism are a weight, 

a L-dimensional mean vector, and a L×L covariance matrix of mixture component m of 

state i in stream s. 

2.1.1 Probability Evaluation 

When a state sequence of length T is determined as q = (q1, q2, ..., qT), the observation 

probability of an observation sequence O = (o1, o2, ..., oT) of length T, given the HMM λ 

can be simply calculated by multiplying the output probabilities for each state, that is, 

 

The probability of such a a state sequence q can be calculated by multiplying the state 

transition probabilities, 

 

where aq0i = πi is the initial state probability. Using Bayes’ theorem, the joint probability 

of O and q can be simply written as 

 

Hence, the probability of the observation sequence O given the HMM λ is calculated by 

using marginalization of state sequences q[3], that is, by summing P (O, q|λ) over all 

possible state sequences q, 
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for ∀ t ∈ [1, T]. Therefore, we can efficiently calculate the probability of the observation 

sequence using forward and backward probabilities defined as 

 

The forward and/or backward probabilities can be recursively calculated as follows: 

1. Initialization 

 

2. Recursion 

 

Thus, the P(O|λ) is given by 

 

 

2.2 Optimal State Sequence 

A single best state sequence q∗ = (q∗1, q∗2, ..., q∗T) for a given observation sequence O = 

(o1, o2, ..., oT) is also useful for various applications. For instance, most speech 
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recognition systems use the joint probability of the observation sequence and the most 

likely state sequence P (O, q∗|λ) to approximate the real probability P(O|λ) 

 

 

 

The best state sequence q∗ = argmaxq P (O, q|λ) can be obtained by a manner like the 

Dynamic Programming (DP) procedure, which is often referred to as the Viterbi 

algorithm. Let δt(i) be the probability of the most likely state sequence ending in state i 

at time t 

 

 

 

The best state sequence q∗ = argmaxq P(O,q|λ) can be obtained by a manner similar to 

the Dynamic Programming (DP) procedure, which is often referred to as the Viterbi 

algorithm. Let δt(i) be the probability of the most likely state sequence ending in state i 

at time t 

 

 

and ψt (i) be the array to keep track. Using these variables, the Viterbi algorithm can be 

written as follows: 
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1. Initialization 

 

2. Recursion 

 

3. Termination 

 

4. Path backtracking 

 

 

2.3  Parameter Estimation 

There is no known way to analytically solve the model parameter set which satisfies a 

certain optimization criterion such as maximum likelihood (ML) criterion as follows: 

 

Since this problem is an optimization problem from incomplete data including the hidden 

variable q, it is difficult to determine λ∗ which globally maximizes likelihood P(O|λ) for 

a given observation sequence O in a closed form. 

However, a model parameter set λ which locally maximizes P(O|λ) can be obtained using 

an iterative procedure such as the expectation-maximization (EM) algorithm which 
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conducts optimization of the complete dataset. This optimization algorithm is often 

referred to as the Baum-Welch algorithm.  

In the following, the EM algorithm for the CD-HMM using a single Gaussian distribution 

are described[8][3]. The EM algorithm for the HMM with discrete output distributions 

or Gaussian mixture distributions can also be derived straightforwardly. 

2.3.1 Auxiliary Function Q 

In the EM algorithm, an auxiliary function Q(λ ,λ) of current parameter set λ and new 

parameter set λ is defined as follows: 

 

At each iteration of the procedure, current parameter set λ is replaced by new parameter 

set λ which maximizes Q(λ,λ). This iterative procedure can be proved to increase 

likelihood P(O|λ) monotonically and converge to a certain critical point, since it can be 

proved that the Q-function satisfies the following theorems: 

 

Theorem 1 

 

Theorem 2 

The auxiliary function Q(λ,λ) has a unique global maximum as a function of λ, and this 

maximum is the one and only critical point. 
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Theorem 3 

A parameter set λ is a critical point of the likelihood P(O|λ) if and only if it is a critical 

point of the Q-function 

2.3.2 Maximization of Q-Function 

Using above logarithm of likelihood function of P(O,q|λ) can be written as 

 

 

where γt(i) and ξt (i,j) are the state occupancy probability of being state i at time t, and 

the probability of being state i at time t and state j at time t + 1, respectively, 
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Chapter 3 

HMM-Based Speech Synthesis 

 

 

 

 

 

 

 



 

27 
 

This chapter describes an HMM-based text-to-speech synthesis (TTS) system. In the 

HMM-based speech synthesis, the speech parameters of a speech unit such as the 

spectrum, fundamental frequency (F0), and phoneme duration are statistically modeled 

and generated by using HMMs based on maximum likelihood criterion. In this chapter, 

we briefly describe the basic structure and the algorithms of the HMM-based TTS 

system. 

 

3.1 Parameter Generation Algorithm 

3.1.1 Formulation of the Problem 

First, we describe an algorithm to directly generate optimal speech parameters from the 

HMM in the maximum likelihood sense. Given a HMM λ using continuous distributions 

and length T of a parameter sequence to be generated, the problem for generating the 

speech parameters from the HMM is to obtain a speech parameter vector sequence O 

=(o1, o2,... oT) which maximizes P(O|λ,T) with respect to O, 

 

Since there is no known method to analytically obtain the speech parameter sequence 

which maximizes P(O|λ,T) in a closed form, this problem is approximated by using the 

most likely state sequence in the same manner as the Viterbi algorithm, i.e., 

 

Using Bayes’ theorem, the joint probability of O and q can be simply written as 
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Hence, the optimization problem of the probability of the observation sequence O given 

the HMM λ and the length T is divided into the following two optimization problems: 

 

If the parameter vector at frame t is determined independently of preceding and 

succeeding frames, the speech parameter sequence O which maximizes P(O|q∗,λ,T) is 

obtained as a sequence of mean vectors of the given optimum state sequence q∗. This will 

cause discontinuity in the generated spectral sequence at transitions of states, resulting 

in clicks in synthesized speech which degrade quality of synthesized speech. To avoid 

this, it is assumed that the speech parameter vector ot consists of the M-dimensional static 

feature vector ct =[ ct(1), ct(2),...,ct(M)]T (e.g., cepstral coefficients) and the M-

dimensional dynamic feature vectors Δct, Δ2ct (e.g., delta and delta-delta cepstral 

coefficients), i.e., ot = [cT
t, ΔcT

t, Δ2 cT
t ] T and that the dynamic feature vectors are 

determined by linear combination of the static feature 

 

vectors of several frames around the current frame. By setting Δ(0)ct = ct, Δ
(1)ct = ct and 

Δ(2)ct = ct, the general form Δ(n)ct is defined as 
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3.1.2 Solution for the Optimization Problem O∗ 

First, we describe a solution for the optimization problem O∗ given the optimum state 

sequence q∗. The speech parameter vector sequence O is rewritten in a vector form as O 

= [oT
1, o

T
2, ..., o

T
T] T, that is, O is a super-vector made from all the parameter vectors. In 

the same way, C is rewritten as C = [cT
1, c

T
1, ..., c

T
T] T, Then, O can be expressed by C 

as O = WC where 

 

and 0M×M and I M×M are the M ×M zero matrix and the M ×M identity matrix, respectively. 

It is assumed that ct = 0M (t<1, T < t) where0M denotes the M-dimensional zero vector. 

Using the variable, the probability P(O|q∗,λ,T) is written as 

 

where μ = [μT
q1

*, μT
q2

*, … μT
qT

*] T and U = [UT
q1

*, UT
q2

*, … UT
qT

*] T  UT
q* and μ T

q* and 

are the mean vector and the diagonal covariance matrix of the state qt of the optimum 

state sequence q∗. Thus, by setting 

 

the following equations are obtained, 
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where TM×TM matrix R and TM-dimensional vector r are as follows: 

 

By solving the equations a speech parameter sequence C which maximizes P(O|q∗, λ,T) 

is obtained. By utilizing the special structure of R, can be solved by the Cholesky 

decomposition or the QR decomposition efficiently. 

3.1.3 Solution for the Optimization Problem q∗ 

Next, we describe a solution for the optimization problem q∗ given the model parameter 

λ and the length T. The P(q|λ,T) is calculated as 

 

where aq0q1 = πq1. If the value of P(q|λ,T) for every possible sequence q can be obtained, 

we can solve the optimization problem[34][21]. However, it is impractical because there 

are too many combinations of q. Furthermore, if state duration is controlled only by self-

transition probability, state duration probability density associated with state i becomes 

the following geometrical distribution: 

 

where pi(d) represents probability of d consecutive observations in state i, and aii is self-

transition probability associated with sate i. This exponential state duration probability 

density is inappropriate for controlling state 
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and/or phoneme duration. To control temporal structure appropriately, HMMs should 

have explicit state duration distributions. The state duration distributions can be modeled 

by parametric probability density functions (pdfs) such as the Gaussian pdfs or Gamma 

pdfs or Poisson pdfs. Assume that the HMM λ is left-to-right model with no skip, then 

the probability of the state sequence q = (q1, q2, ..., qT) is characterized only by explicit 

state duration distributions. Let pk(dk) be the probability of being dk frames at state k, 

then the probability of the state sequence q can be written as 

 

where K is the total number of states visited during T frames, and 

 

When the state duration probability density is modeled by a single Gaussian pdf, 
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where mk and σk are the mean and variance of the duration distribution of state k, 

respectively, it is possible to control speaking rate via ρ instead of the total frame length 

T. When ρ is set to zero, speaking rate becomes average rate, and when ρ is set to negative 

or positive value, speaking rate becomes faster or slower, respectively. It is noted that 

state durations are not made equally shorter or longer because variability of a state 

duration depends on the variance of the state duration density[6]. 

3.2 Examples of Parameter Generation 

This section shows several examples of speech parameter sequences generated from 

HMMs.  

HMMs were trained using speech data uttered by a male speaker MHT from ATR 

Japanese speech database. Speech signals were down sampled from 20kHz to 10kHz and 

windowed by a 25.6ms Blackman window with 5ms shift, and then mel-cepstral 

coefficients are obtained by a mel-cepstral analysis technique. The feature vector consists 

of 16 mel-cepstral coefficients including zeroth coefficient and their delta and delta-delta 

coefficients. Delta and delta-delta coefficients are calculated as follows: 
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densities were calculated using histograms of state duration obtained by a state-level 

forced Viterbi alignment of training data to the transcriptions using HMMs trained by 

the EM algorithm. 
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3.2.1 Effect of Dynamic Features 

The above figure shows an example of generated parameter sequences from a single 

mixture HMM, which was constructed by concatenating phoneme HMMs sil, a, i, and 

sil. HMMs were trained using phonetically balanced 503 sentences. The number of 

frames was set to T = 80, and the weighting factor for the score on state duration was set 

to Wd →∞, that is, state durations were determined only by state duration densities, and 

the sub-optimal state sequence search was not performed. In the figure, horizontal axis 

represents the frame number and vertical axes represent the values of zeroth, first, and 

second order mel-cepstral parameters, and their delta and delta-delta parameters. Dashed 

lines indicate means of output distributions, gray areas indicate the region within 

standard deviations, and solid lines indicate trajectories of generated parameter 

sequences[45][12].  

The above figure shows sequences of generated spectra for the same conditions, Without 

dynamic features, the parameter sequence which maximize P(O|q,λ,T) becomes a 

sequence of mean vectors. As a result, discontinuities occur in the generated spectral 

sequence at transitions of states. 
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3.3. F0 MODELLING 

 

By incorporating dynamic features, generated parameters reflect statistical information 

(means and variances) of static and dynamic features modeled by HMMs. For example, 

at the first and last states of phoneme HMMs, since the variances of static and dynamic 

features are relatively large, generated parameters vary appropriately according to the 

values of parameters of the preceding and following frames. Meanwhile, at the central 

states of HMMs, since the variances of static and dynamic features are small and the 

means of dynamic features are close to zero, generated parameters are close to means of 

static features. 

To synthesize speech, it is necessary to model and generate fundamental frequency (F0) 

patterns as well as spectral sequences[1]. However, the F0 patterns cannot be modeled 

by conventional discrete or continuous HMMs, because the values of F0 are not defined 

in unvoiced regions, i.e., the observation sequence of an F0 pattern is composed of one-

dimensional continuous values and a discrete symbol which represents “unvoiced”. 

Assuming that there are a single one-dimensional space Ω1 and a single zero-dimensional 

space Ω2 in sample space Ω of F0 patterns[32]. It is considered that observations of F0 

in voiced regions is drawn from Ω1 observations in unvoiced regions is drawn from Ω2 
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3.4 Multi-Space Probability Distribution 

Consider a sample space Ω, which consists of G spaces: 

 

where all spaces specified by X are n dimensional. On the other hand, X does not 

necessarily include all indices which specify n-dimensional spaces[4]. It is noted that not 

only the observation vector x but also the space index set X is a random variable, which 

is determined by an observation device (or feature extractor) at each observation. The 

observation probability of o is defined by 

 

 

 



 

37 
 

 

It is noted that, although Ng(x) does not exist for ng = 0 since Ωg contains only one sample 

point, for simplicity of notation, Ng(x) ≡ 1 is defined for ng = 0. 

Some examples of observations, an observation o1 consists of a set of space of indices 

X1 = {1, 2, G} and a three-dimensional vector x1 ∈ R3. Thus, the random variable x is 

drawn from one of three spaces Ω1, Ω2, ΩG ∈ R3, and its pdf is given by 

w1N1(x)+w2N2(x)+ wGNG (x). The probability distribution defined above, which will be 

referred to as multi-space probability distribution (MSD), is the same as the discrete 

distribution when ng ≡ 0[7][10]. Furthermore, if ng ≡ m>0 and S(o) ≡ {1, 2, ..., G}, the 

multi-space probability distribution is represented by a G-mixture pdf. Thus, the multi-

space probability distribution is more general than either discrete or continuous 

distributions.  

The following example shows that the multi-space probability distribution conforms to 

statistical phenomena in the real world: 
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A man is fishing in a pond. There are red fishes, blue fishes, and tortoises in the pond. In 

addition, some junk articles are in the pond. When he catches a fish, he is interested in 

the kind of the fish and its size, for example, the length and height. When he catches a 

tortoise, it is sufficient to measure the diameter if the tortoise is assumed to have a circular 

shape. Furthermore, when he catches a junk article, he takes no interest in its size 

 

In this case, the sample space consists of four spaces: 

Ω1: Two-dimensional space corresponding to lengths and heights of red fishes. 

Ω2: Two-dimensional space corresponding to lengths and heights of blue fishes. 

Ω3: One-dimensional space corresponding to diameters of tortoises. 

Ω4: Zero-dimensional space corresponding to junk articles. 
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The weights w1, w2, w3, w4 are determined by the ratio of red fishes, blue fishes, tortoises, 

and junk articles in the pond. Functions N1(·) and N2(·) are two-dimensional pdfs for 

sizes (lengths and heights) of red fishes and blue fishes, respectively. The function N3(·) 

is the one-dimensional pdf for diameters of tortoises. For example, when the man catches 

a red fish, the observation is given by o = ({1}, x), where x is a two-dimensional vector 

which represents the length and height of the red fish. Suppose that he is fishing day and 

night, and during the night, he cannot distinguish between the colors of fishes, while he 

can measure their lengths and heights[13][16][19]. In this case, the observation of a fish 

at night is given by o = ({1,2}, x) 
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3.5 MSD-HMM 

By using the multi-space distribution, a new kind of HMM is defined which is called 

multi-space probability distribution HMM (MSD-HMM). The output probability in each 

state of MSD-HMM is given by the multi-space probability distribution defined in the 

previous section. An N-state MSD-HMM λ is specified by the initial state probability 

distribution π = {πj}
N

j=1, the state transition probability distribution              A = {aj}
N

j=1, 

and the state output probability distribution B = {bj(.)}
N

j=1, where 

 

3.6 F0 Modelling using MSD-HMM 

As described before, because the observation sequence of an F0 pattern is composed of 

one-dimensional continuous values and a discrete symbol which represents “unvoiced,” 

we apply multi-space probability distribution HMM (MSD-HMM) to F0 pattern 

modeling and generation[22][25]. In the MSD-HMM for F0 modelling, the observation 

sequence of F0 pattern is viewed as a mixed sequence of outputs from a one-dimensional 

space Ω1 and a zero-dimensional space Ω2 which correspond to voiced and unvoiced 

regions, respectively. Each space has the space weight wg the space Ω1 has a one-

dimensional normal probability density function N1(x). On the other hand, the space Ω2 

has only one sample point. An F0 observation o consists of a continuous random variable 

x and a set of space indices X, that is, 

 

where X = {1} for voiced region and X = {2} for unvoiced region. Then the observation 

probability of o is defined by 
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where V (o) = x and S(o)=X. It is noted that, although N2(x) does not exist for Ω2, N2(x)≡ 

1 is defined for simplicity of notation. 

Using an HMM in which output probability in each state, called MSD-HMM, voiced and 

unvoiced observations of F0 can be modeled in a unified model without any heuristic 

assumption. Moreover, spectrum and F0 can be modeled simultaneously by 

 

multi-stream MSD-HMM, in which spectral part is modeled by continuous probability 

distribution (CD), and F0 part is modeled by MSD. In the figure, ct, Xp
t, and xp

t represent 

the spectral parameter vector, a set of space indices of F0, and F0 parameter at time t, 

respectively, and Δ and Δ2 represent the delta and delta-delta parameters, respectively. 

3.6.1 Examples of F0 Generation 

Examples of F0 patterns generated for a sentence included in the training data. In the 

figure, the dotted lines represent F0 patterns of the real utterance obtained from the 

database, and the solid lines represent the generated patterns. It is noted that state 

durations were obtained from result of Viterbi alignment of HMMs to real utterance for 

comparison with the real utterance. an F0 pattern generated from the model before 

clustering[28]. The generated F0 pattern is almost identical with the real F0 pattern, since 

there are several models which is observed only once in the training data, and such 
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models model only one pattern each. the F0 patterns are close to the real F0 pattern even 

when context clustering is performed. 
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dotted lines represent F0 patterns of the real utterance obtained from the database, the 

solid lines represent the generated patterns, and state durations were obtained from the 

result of Viterbi alignment of HMMs to real utterance[32][35]. The generated F0 patterns 

are like that of natural utterance even though 34 of the 40 labels occurring in the sentence 

were not observed in the training data. 
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3.7 Decision-Tree-based Context Clustering 

In continuous speech, parameter sequences of speech unit (e.g., phoneme) can vary 

according to phonetic context. To manage the variations appropriately, context 

dependent models, such as triphone/quinolone models, are often employed. In the HMM-

based speech synthesis system, we use more complicated speech units considering 

prosodic and linguistic context such as mora, accentual phrase, part of speech, breath 

group, and sentence information to model suprasegmental features in prosodic feature 

appropriately. However, it is impossible to prepare training data which cover all possible 

context dependent units, and there is great variation in the frequency of appearance of 

each context dependent unit. To alleviate these problems, several techniques are 

proposed to cluster HMM states and share model parameters among states in each cluster. 

This algorithm is often referred to as decision-tree-based context clustering algorithm. 

3.7.1 Decision Tree 

An example of a decision tree is shown in Fig.2.11. The decision tree is a binary tree. 

Each node (except for leaf nodes) has a context related question, such as R-silence? (“is 

the previous phoneme a silence?”) or L-vowel? (“is the next phoneme vowels?”), and 

two child nodes representing “yes” and “no” answers to the question. Leaf nodes have 

state output distributions. Using the decision-tree-based context clustering, model 

parameters of the speech units for the unseen contexts can be obtained, because any 

context reaches one of the leaf nodes, going down the tree starting from the root node 

then selecting the next node depending on the answer about the current context. 

3.7.2 Construction of Decision Tree 

We will briefly review the construction method of the decision tree using the minimum 

description length (MDL) criterion. Let S0 be the root node of a decision tree and U (S1, 

S2, ... SM) be a model defined for the leaf node set {S1, S2, ... SM}. Here, a model is a set 

of leaf nodes of a decision tree. 
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A Gaussian pdf Nm, which is obtained by combining several Gaussian pdfs classified into 

the node Sm, is assigned to each node Sm[37]. An example of a decision tree for M = 3 

To reduce computational costs, we make the following three assumptions: 

1. The transition probabilities of HMMs can be ignored in the calculation of the auxiliary 

function of the likelihood. 

2. Context clustering does not change the frame or state alignment between the data and 

the model. 

3. The auxiliary function of the log-likelihood for each state can be given by the sum of 

the log-likelihood for each data frame weighted by the state occupancy probability for 

each state. 
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From these assumptions, the auxiliary function L of the log-likelihood of the model U is 

given by 

 

where μm and Σm is the mean vector and the diagonal covariance matrix of the Gaussian 

pdf Nm at node Sm, respectively. If the re-estimation of the HMM parameters using EM 

was conducted fully, the estimated covariance matrix at convergence point is 

approximated by 

 

and furthermore, since the covariance matrix is assumed to be diagonal, 

 

can be obtained. Thus, the auxiliary function L of the log-likelihood of the model U can 

be transformed as follows: 

 

the description length of the model U is given by 
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Figure: Splitting of node of decision tree 

is the code length required for choosing the model, which is assumed here to be constant, 

suppose that node Sm of model U is split into two nodes, Smqy and Smqn, by using question 

q. Let UI be the model obtained by splitting the Sm of model U by question q[40][44]. 

The description length of model UI is calculated as follows: 

 

where the number of nodes of UI is M + 1, Γmqy, Γmqn and Σmqy, Σmqn are the state 

occupancy probabilities and the covariance matrices of Gaussian pdfs at nodes Smqy and 

Smqn, respectively. Hence, the difference between the description lengths before and after 

the splitting as follows: 
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An example of a decision tree constructed for the first state of the F0 part is shown in 

[42][48]. In the figure, “sil” represents the silence before and after the sentence, “silence” 

represents a class composed of “sil”, pauses inside the sentence, and silent intervals just 

before unvoiced fricatives, and “L-*” and “R-*” represent the left and right context of 

the current phoneme or accentual phrase. In addition, “1to13 a0” represents that the 

current mora is in between first and 13th morae of an accentual phrase of type 0, and 

“low-tail” represents that the current accentual phrase is other than type 0 and the end of 

a sentence. 
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Figure: An example of a decision tree. 

3.8 HMM-based TTS System: Overview 

A block-diagram of the HMM-based TTS system. The system consists of training stage 

and synthesis stage. In the training stage, context dependent phoneme HMMs are trained 

using a speech database. Spectrum and F0 are extracted at each analysis frame as the 

static features from the speech database and modeled by multiteam HMMs in which 

output distributions for the spectral and logF0 parts are modeled using a continuous 

probability distribution and the multi-space probability distribution (MSD), respectively. 

To model variations in the spectrum and F0, we take the following phonetic, prosodic, 

and linguistic contexts into account: 

• the number of morae in a sentence.  

• the position of the breath group in a sentence.  

• the number of morae in the {preceding, current, and succeeding} breath groups. 

• the position of the current accentual phrase in the current breath group.  

• the number of morae and the type of accent in the {preceding, current, and succeeding} 

accentual phrases. 

• the part of speech of the {preceding, current, and succeeding} morphemes. 
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• the position of the current mora in the current accentual phrase;  

• the differences between the position of the current mora and the type of accent. 

• {preceding, current, and succeeding} phonemes.  

• style (for style-mixed modeling only).  

Then, the decision-tree-based context clustering technique is applied separately to the 

spectral and logF0 parts of the context-dependent phoneme HMMs. In the clustering 

technique, a decision tree is automatically constructed based on the MDL 

criterion[21][25]. We then perform re-estimation processes of the clustered context-

dependent phoneme HMMs using the Baum Welch (EM) algorithm. Finally, state 

durations are modeled by a multivariate Gaussian distribution, and the same state 

clustering technique is applied to the state duration models. In the synthesis stage, first, 

an arbitrarily given text is transformed into a sequence of context-dependent phoneme 

labels. Based on the label sequence, a sentence HMM is constructed by concatenating 

context-dependent phoneme HMMs[2][6]. From the sentence HMM, spectral and F0 

parameter sequences are obtained based on the ML criterion in which phoneme durations 

are determined using state duration distributions. Finally, by using an MLSA (Mel Log 

Spectral Approximation) filter, speech is synthesized from the generated mel-cepstral 

and F0 parameter sequences. 

3.9 Speaker Conversion 

In general, it is desirable that speech synthesis systems could synthesize speech with 

arbitrary speaker characteristics and speaking styles. For example, considering the 

speech translation systems which are used by several speakers simultaneously, it is 

necessary to reproduce input speakers’ characteristics to make listeners possible to 

distinguish speakers of the translated speech. 
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Figure: HMM-based speech synthesis system. 

Another example is spoken dialog systems with multiple agents. For such systems, each 

agent should have his or her own speaker characteristics and speaking styles. From this 

point of view, several spectral/voice conversion techniques have been proposed. In the 

HMM-based speech synthesis method, we can easily change spectral and prosodic 

characteristics of synthetic speech by transforming HMM parameters appropriately since 

speech parameters used in the synthesis stage are statistically modeled by using the 

framework of the HMM. In fact, we have shown in that the TTS system can generate 

synthetic speech which closely resembles an arbitrarily given speaker’s voice using a 

small amount of target speaker’s speech data by applying speaker adaptation techniques 

such as MLLR (Maximum Likelihood Linear Regression) algorithm. In the speaker 

adaptation, initial model parameters, such as mean vectors of output distributions, are 

adapted to a target speaker using a small amount of adaptation data uttered by the target 

speaker. The initial model can be speaker dependent or independent. For the case of 

speaker dependent initial model, since most of speaker adaptation techniques tend to 
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work insufficiently between two speakers with significant difference in voice 

characteristics, it is required to select the speaker used for training the initial model 

appropriately depending on the target speaker[3][14]. On the other hand, using speaker 

independent initial models, speaker adaptation techniques work well for most target 

speakers, though the performance will be lower than using speaker dependent initial 

models which matches the target speaker and has sufficient data. Since the synthetic 

speech generated from the speaker independent model can be considered to have 

averaged voice characteristics and prosodic features of speakers used for training, we 

refer to the speaker independent model as the “average voice model”, and the synthetic 

speech generated from the average voice model as “average voice”. In the next section, 

we will briefly describe the MLLR adaptation. 

3.9.1 MLLR Adaptation 

In the MLLR adaptation, which is the most popular linear regression adaptation, mean 

vectors of state output distributions for the target speaker’s model are obtained by 

linearly transforming mean vectors of output distributions 

 

Figure: HMM-based MLLR adaptation algorithm. 
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Chapter 4 

Mel-Cepstral Analysis and Synthesis 
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The speech analysis/synthesis technique is one of the most important issues in vocoder 

based speech synthesis system, since characteristics of the spectral model, such as 

stability of synthesis filter and interpolation performance of model parameters, influence 

quality of synthetic speech, and even the structure of the speech synthesis system. From 

these points of view, the mel-cepstral analysis/synthesis technique is adopted for spectral 

estimation and speech synthesis in the HMM-based speech synthesis system. This 

chapter describes the mel-cepstral analysis/synthesis technique, how feature parameters, 

i.e., mel-cepstral coefficients, are extracted from speech signal and speech is synthesized 

from the mel-cepstral coefficients. 

 

4.1 Discrete-Time Model of Speech Production 

To treat a speech waveform mathematically, a discrete-time model is generally used to 

represent sampled speech signals. The transfer function H(z) models the structure of 

vocal tract. The excitation source is chosen by a switch which controls voiced/unvoiced 

characteristics of speech. The excitation signal is modeled as either a quasi-periodic train 

of pulses for voiced speech, or a random noise sequence for unvoiced sounds[2][7][18]. 

To produce speech signals x(n), the parameters of the model must change with time. For 

many speech sounds, it is reasonable to assume that the general properties of the vocal 

tract and excitation remain fixed for periods of 5–10 msec. Under such an assumption, 

the excitation e(n) is filtered by a slowly time-varying linear system H(z) to generate 

speech signals x(n). 

The speech x(n) can be computed from the excitation e(n) and the impulse response h(n) 

of the vocal tract using the convolution sum expression 
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Figure: Discrete-time model for speech production. 

x(n)=h(n) ∗ e(n) 

where the symbol ∗ stands for discrete convolution. The details of digital signal 

processing and speech processing. 

 

4.2 Mel-Cepstral Analysis 

4.2.1 Spectral Model 

In the mel-cepstral analysis, the vocal tract transfer function H(z) is modeled by M-th 

order mel-cepstral coefficients c = [ c(0), c(1), ..., c(M)]T (the superscript · T denotes 

matrix transpose) as follows: 



 

56 
 

 

The phase response β(ω) gives a good approximation to auditory frequency scale with 

an appropriate choice of α. examples of α for approximating the auditory frequency 

scales at several sampling frequencies. In the figure when sampling frequency is 16 kHz, 

the phase response β(ω) provides a good approximation to mel scale for α =0 .42. 

4.2.2 Spectral Criterion 

In the unbiased estimation of log spectrum (UELS) it has been shown that the power 

spectral estimate |H(ejω)|2, which is unbiased in a sense of relative power, is obtained in 

such a way that the following criterion E is minimized: 
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Figure: Frequency warping by all-pass system. 

where w(n) is the window whose length is N. It is noted that the criterion of equation has 

the same form as that of maximum-likelihood estimation for a normal stationary AR 

process. Since the criterion is derived without assumption of any specific spectral models, 

it can be applied to the spectral model, Now taking the gain factor K outside from H(z) 

in yields 
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If the system H(z) is a synthesis filter of speech, D(z) must be stable. Hence, if D(z) is 

the minimum-phase system yields the relationship, 

 

Consequently, omitting the constant terms, the minimization of E with respect to c leads 

to the minimization of ε with respect to c1 and the minimization of E with respect to 

K[21][27]. By taking the derivative of E with respect to K and setting the result to zero, 

K is obtained as follows: 

K = √εmin 

where εmin is the minimum value of ε. It has been shown that the minimization of leads 

to the minimization of the residual energy.  

There exists only one minimum point because the criterion E is convex with respect to 

c. Consequently, the minimization problem of E can be solved using efficient iterative 

algorithm based on FFT and recursive formulas. In addition, the stability of model 

solution H(z) is always guaranteed. 

 

Figure: Time domain representation of mel-cepstral analysis. 
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4.3 Synthesis Filter 

To synthesize speech from the mel-cepstral coefficients, it is needed to realize the 

exponential transfer function D(z). Although the transfer function D(z) is not a rational 

function, the MLSA (Mel Log Spectral Approximation) filter can approximate D(z) with 

sufficient accuracy. The complex exponential function expw is approximated by a rational 

function 
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The coefficients b can be obtained from c1 using the transformation 
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Chapter 5 

Speech Synthesis with Various Voice 

Characteristics 
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In general, it is desirable that speech synthesis systems have the ability to synthesize 

speech with arbitrary voice characteristics and speaking styles. For example, considering 

the speech translation systems which are used by a number of speakers simultaneously, 

it is necessary to reproduce input speakers’ voice characteristics to make listeners 

possible to distinguish speakers of the translated speech. Another example is spoken 

dialog systems with multiple agents. For such systems, each agent should have his or her 

own voice characteristics and speaking styles. From this point of view, there have been 

several studies which focus on speaker conversion. Since speaker characteristics are 

included in spectrum, fundamental frequency, and duration [45],[46], it is necessary to 

convert all these speech features to convert speech from one speaker to another. 

However, it has been reported that spectral information is dominant over prosodic 

information [45], and a number of techniques for spectral conversion have been proposed 

[47]–[49].  

On the other hand, in speech recognition area, speaker adaptation of acoustic 

models[11],[12],[44],[50]–[53] is one of the most active research issues in order to 

improve performance of speech recognizers. Speaker adaptation is like voice conversion 

in that distribution of spectral parameter of a speaker (or speakers in training data) is 

converted to a target speaker, and there have been several works to utilize speaker 

adaptation techniques for voice conversion[48]. The HMM-based TTS system described 

in this thesis uses phoneme HMMs as speech units and generates speech spectral 

sequence directly from phoneme HMMs. Hence, voice characteristics conversion is 

achieved by transforming HMM parameters appropriately. This mean that speaker 

adaptation techniques proposed for HMM-based speech recognition systems are 

applicable to the HMM-based TTS system for voice characteristics conversion. This 

chapter describes a case in which the MAP-VFS algorithm[11],[12], one of successful 

speaker adaptation techniques, are applied to the HMM based TTS system, and shows 

that only a small amount of adaptation data is enough to synthesize speech which 

resembles arbitrarily given target speaker’s voice characteristics. 
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5.1 System Overview 

A block diagram of the HMM-based speech synthesis system with arbitrarily given 

speaker’s voice characteristics, the system has the adaptation stage in addition to training 

and synthesis stages. In the training stage, mel-cepstral coefficients are obtained from 

speech database, and delta and delta-delta mel-cepstral coefficients are calculated. Then 

phoneme HMMs are trained using mel-cepstral coefficients and their deltas and delta-

deltas. The trained HMMs are used as a initial model in the following adaptation stage. 

In the adaptation stage, the initial model is adapted to a target speaker using a speaker 

adaptation technique with a small amount of adaptation data. Typically, the amount of 

adaptation data lies in between several sentences and fifty sentences. In the synthesis 

stage, an arbitrarily given text to be synthesized is transformed into a phoneme sequence, 

and a sentence HMM is constructed by concatenating adapted phoneme HMMs. From 

the sentence HMM, a speech parameter sequence is generated using the parameter 

generation algorithm 
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5.2 Speaker Adaptation Based on MAP-VFS Algorithm 

In the speaker adaptation stage, initial model parameters, such as mean vectors of output 

distributions, are adapted to a target speaker using a small amount of adaptation data 

uttered by the target speaker. The initial model can be speaker dependent or independent. 

For the case of speaker dependent initial model, since most of speaker adaptation 

techniques tend to work insufficiently between two speakers with significant difference 

in voice characteristics, it is required to select the speaker used for training the initial 

model appropriately depending on the target speaker. On the other hand, using speaker 

independent initial models, speaker adaptation techniques work well for most target 

speakers, though the performance will be lower than using speaker dependent initial 

models matching with the target speaker. Most of speaker adaptation techniques are 

applicable to voice characteristics conversion for the HMM-based speech synthesis 

system. From a few speaker adaptation techniques proposed for speaker recognition, this 

chapter describes a case where the MAP-VFS algorithm, which is one of the most 

successful speaker adaptation techniques, is adopted for voice characteristics conversion. 

The MAP-VFS algorithm is a combination of the maximum a posteriori (MAP) 

estimation and the vector field smoothing (VFS) algorithm. In the following, these 

algorithms are described briefly. 

 

5.2.1 Maximum a Posteriori (MAP) Estimation 

Let λ be the model parameter to be estimated from the sample x, and g(λ) be the prior 

probability distribution function (pdf) of λ. The MAP estimate λMAP is defined as the 

model which maximizes posterior pdf of λ denoted as  
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where f(x|λ) represents the pdf of sample x. If it is assumed that there is no knowledge 

about λ, the prior pdf g(λ) becomes a uniform distribution, i.e., g(λ) = constant. Under 

this assumption, reduces to the maximum likelihood (ML) formulation. Let q be the 

random vector denoting the HMM state sequence. There are two ways of approximating 

λMAP, namely by a local maximization of f(x|λ)g(λ) using forward-backward MAP 

algorithm, and of f(x,q|λ)g(λ) using segmental MAP algorithm[52]. In the following, the 

former approach is adopted. Let x = (x1, ..., xT) be a given sequence of observation vectors 

with length T drawn from a multivariate Gaussian distribution. Assuming that the 

covariance of the distribution of observation vectors is known and fixed, it can be shown 

that the conjugate prior for mean is also Gaussian. If the mean µi of the output 

distribution i is used as the mean of the conjugate prior distribution, the MAP estimate 

for the mean is solved by 

 

where γt(i) denotes the probability of xt being observed from the output distribution i. 

Variable τi indicates certainty of the prior distribution, though it is assumed to be a 

constant equivalent for all output distributions in the experiments. It is noted that the 

MAP estimate µMAP
i is weighted average of prior mean µi and the ML estimate µi

ML 
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When ni equals to zero, i.e., no training sample is available, the MAP estimate is simply 

the prior mean. On the contrary, when many training samples are used in this (i.e., ni 

→∞), the MAP estimate converges to the ML estimate µML
i asymptotically. Although 

the MAP estimates for covariances and transition probabilities can be obtained for 

continuous HMM, only mean vectors were adapted here. It is also noted that the forward-

backward MAP algorithm is based on EM algorithm and results in iteration of estimation 

of γt(i) E-step, though only one iteration was performed in the experiments. 

5.2.2 Vector Field Smoothing (VFS) Algorithm 

Since the MAP estimation is performed with very few adaptation data, there are several 

distributions which have no adaptation data and remain untrained. Furthermore, MAP 

estimated parameters are not necessarily reliable because of insufficient training data. To 

overcome these problems, VFS is performed after the MAP estimation to estimate new 

parameters for untrained distributions and to smooth estimated parameters of MAP 

trained distributions by interpolating and smoothing transfer vectors, which represent 
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differences between parameters before and after the MAP estimation. The transfer vector 

for the mean vector of distribution i is calculated by 

 

where µi and µMAP i are initial and MAP estimated mean vectors of distribution i, 

respectively. Let GK(q) denotes the group of K nearest-neighbor MAP estimated 

distributions of distribution q. The interpolated transfer vector of untrained distribution 

j, vI
j are calculated as follows, 

 

where wjk is a weighting factor based on the distance between µj and µk. Using this 

interpolated transfer vector, estimated mean vector µI
j is obtained by 

 

For MAP estimated distribution i, the smoothed transfer vector vS
i is calculated as 

follows, 
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5.3 Experiments 

5.3.1 Experimental Conditions 

ATR Japanese speech database was used for training and testing. Speech signals sampled 

at 20 kHz were down sampled to 10 kHz and re-labeled based on label data included in 

the ATR Database using 35 phonemes and silence. A speaker and gender independent 

model were trained using 3,000 
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sentences uttered by ten female and ten male speakers (150 sentences for each speaker). 

Target speakers were two female speakers FKN and FYM, and two male speakers MHT 

and MYI, who were not included in training speakers. For comparison, speaker 

dependent models for target speakers were also trained using 450 sentences uttered by 

target speakers. Speech signals were windowed by 25.6ms Blackman window with 5ms 

shift. then mel-cepstral coefficients were obtained by the 15th order mel-cepstral 

analysis. The dynamic features ∆ct and ∆2ct, i.e., delta and delta-delta mel-cepstral 

coefficients at frame t, respectively, 

 

The feature vector was composed of 16 mel-cepstral coefficients including the zeroth 

coefficient, and their delta and delta-delta coefficients. HMMs were 5-state left-to-right 

triphone models with single diagonal Gaussian output distribution. A set of states at the 

same position of triphone HMMs having the same central phoneme were clustered using 

a decision-tree based context clustering technique, and a set of tied triphone HMMs were 

constructed. Stop conditions for splitting nodes of the decision tree were set to be 

identical for all speaker independent and speaker dependent models. For speaker 

adaptation, twelve sentences were used which were included in neither training nor test 

sentences. The number of distinct triphones and the number of output distributions 

having adaptation data were slightly different between target speakers. For the case of 

target speaker FKN with 1, 3, 5, 8, 10, and 12 adaptation sentences, the number of distinct 

triphones were 103, 182, 244, 372, 450, and 507, and the number of output distributions 

having adaptation data were 413, 722, 956, 1,407, 1,668, and 1,837, where the total 

number of output distributions of the speaker independent model was 4,620. 

Test data consisted of 53 sentences. From 53 sentences, four sentences were used for the 

subjective experiment, and remaining 49 sentences were used for determining parameters 
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for the MAP-VFS algorithm. It is noted that state durations were determined by Viterbi 

alignment against natural speech uttered by target speaker. 

 

5.3.2 Determination of Parameters for MAP-VFS 

In the MAP-VFS algorithm, there are two parameters which affect adaptation 

performance, that is, the parameter τ for the MAP estimation and the smoothing factor s 

for the VFS algorithm. Before the subjective experiment, values for these parameters 

were obtained based on mel-log-spectral distance between natural and synthetic speech. 

Although there is one more parameter for the VFS algorithm, K, the size of the set of 

neighboring distributions used for interpolation or smoothing, K was fixed to 10 since it 

was observed from preliminary experiments that the value of K does not affect the 

adaptation performance significantly. 
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CHAPTER: 6 

Speaker Independent Phonetic Vocoder 

Based on Recognition and Synthesis 

Using HMM 
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To code speech at rates on the order of 100 bit/s, phonetic and segment vocoders are the 

most popular techniques. These coders decompose speech into a sequence of speech units 

(i.e., phonetic units and acoustically derived segment units, respectively) by using a 

speech recognition technique, and transmit the obtained unit indexes and unit durations. 

The decoders synthesize speech by concatenating typical instances of speech units 

according to the unit indexes and unit durations. This chapter describes a novel approach 

to the phonetic vocoder in which the HMM-based speech recognition and synthesis 

systems are employed for the encoder and decoder, respectively. The proposing vocoder 

is consistent in the sense that both encoding and decoding procedures use the same set of 

phonemes HMMs and are based on maximum likelihood criterion. This chapter also 

proposes a technique for adapting the decoder to input speech to synthesize speech with 

input speaker’s voice characteristics. 

 

Figure: A very low bit rate speech coder based on HMM. 
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6.1 Basic Structure of the Phonetic Vocoder Based on HMM 

6.1.1 System Overview 

In the phonetic vocoder based on HMM, speech spectra are consistently represented by 

mel-cepstral coefficients obtained by a mel-cepstral analysis technique, and the sequence 

of mel-cepstral coefficient vectors for each speech unit is modeled by phoneme HMM. 

The encoder carries out phoneme recognition which adopts advanced techniques used in 

speech recognition and transmits phoneme indexes and state durations to the decoder by 

using entropy coding and vector quantization. Fundamental frequency (F0) information 

is also transmitted to the decoder. In the decoder, phoneme HMMs are concatenated 

according to the phoneme indexes, and the state sequence is determined from the 

transmitted state durations. Then a sequence of mel-cepstral coefficient vectors is 

determined by the parameter generation algorithm from HMM. Finally, speech signal is 

synthesized by the MLSA (Mel Log Spectrum Approximation) filter according to the 

obtained mel-cepstral coefficients. 

6.1.2 Speech Recognition 

Phonetically balanced 503 sentences uttered by a male speaker MHT in the ATR 

Japanese speech database were used for training phoneme HMMs. Speech signals 

sampled at 20kHz were down sampled to 10kHz and windowed by a 25.6ms Hamming 

window with a 5ms shift, and then mel-cepstral coefficients were obtained by the mel-

cepstral analysis technique. The feature vectors consisted of 13 mel-cepstral coefficients 

including the 0th coefficient, and their delta and delta-delta coefficients. The HMMs used 

were 3-state left-to-right triphone models with no skip. Each state was modeled by a 

single Gaussian distribution with the diagonal covariance. Total of 34 phonemes and a 

silent model were prepared. Decision-tree based model clustering was applied to each 

set of triphone models, and the resultant set of tied triphone models has approximately 

1,800 distributions. The speech recognizer of the encoder uses the phoneme pair 

constraints in Japanese language. The phoneme recognition rate for the test data used in 

the subjective evaluation (refer to 8.1.6) was 73.68 % (88.7 % when insertion errors are 

ignored). The average phoneme rate computed from the transcription data is about 9.5 
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phoneme/s while the average phoneme rate computed from the recognition results for the 

test data was 11.7 phoneme/s. It is noted that the test data includes 26 % of silence region. 

6.1.3 Phoneme Index Coding 

The phoneme sequence obtained by the phoneme recognizer is transmitted using entropy 

coding. The histograms of phonemes and phoneme pairs were measured from the 

phoneme recognition results for the training data. When the Huffman coding based on 

the occurrence probability distribution of phonemes was used, the bit rate of phoneme 

information for the test data was about 54 bit/s. Furthermore, using the occurrence 

probability distribution of phoneme pairs (i.e., phoneme bigram probability), the bit rate 

could be reduced to about 46 bit/s. 

6.1.4 State Duration Coding 

For transmitting state durations, the following three methods were examined: 

Method 1 The histogram of state durations for each phoneme was measured from the 

phoneme recognition results for the training data. State durations are transmitted by the 

Huffman coding based on the occurrence probability distribution of state duration for the 

corresponding phoneme. 

Method 2 The histogram of phoneme durations for each phoneme was measured from 

the phoneme recognition results for the training data. Each phoneme duration is 

transmitted using the Huffman coding based on the occurrence probability distribution 

of the corresponding phoneme. In the decoder each phoneme duration is divided into 

state durations using state duration densities associated with the corresponding phoneme 

HMM. The state durations are determined by a method based on the maximum likelihood 

criterion that is, 
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where T is phoneme duration, N is the number of states of the phoneme HMM (N = 3 

for the case of 3-state models), mk, σ
2
k are the mean and variance of the duration density 

associated with the k-th state of the phoneme HMM, respectively. To obtain the state 

duration densities, histograms of state durations were measured from the phoneme 

recognition results for the training data. Each state duration density was modeled by a 

single Gaussian distribution. Regarding state duration densities of a triphone HMM as a 

three-dimensional Gaussian, decision-tree based model clustering were applied to the 

three-dimensional Gaussians. The resultant set of tied state duration models had 

approximately 1,600 distributions. 

Method 3 State durations of each phoneme are regarded as a three-dimensional vector, 

and vector quantized. The codebook is trained by the LBG algorithm based on state 

durations obtained by phoneme recognition for the training data. Three codebooks whose 

sizes are 8, 32, and 1,024, respectively, the VQ indexes are transmitted by using the 

Huffman coding. 

6.1.5 Speech Synthesis 

In the decoder, triphone HMMs corresponding to the transmitted phoneme indexes are 

concatenated, and from the obtained HMM a sequence of mel-cepstral coefficient vectors 

is generated using the algorithm. By exciting the MLSA filter with pulse train or white 

noise generated according to the F0 information, speech signal is synthesized based on 

the generated mel-cepstral coefficients. 
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Chapter 7 

Imposture against Speaker Verification 

Using Synthetic Speech 
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For speaker verification systems, security against imposture is one of the most important 

problems, and several approaches to reducing false acceptance rates for impostors as well 

as false rejection rates for clients have been investigated. For example, text-prompted 

speaker verification has been shown to be robust to the impostor with playing back 

recorded voice of a registered speaker. However, imposture using synthetic speech has 

barely been considered due to the facts that quality of synthetic speech was not high 

enough, and that it was difficult to synthesize speech with arbitrary voice characteristics. 

Meanwhile, recent advances in speech synthesis make it possible to synthesize speech of 

good quality. Moreover, it has been shown in Chapter 6 that the HMM-based speech 

synthesis system can synthesize speech with arbitrarily given speaker’s voice 

characteristics by applying speaker adaptation techniques using a small amount of 

adaptation data. From this point of view, this chapter investigates imposture against an 

HMM-based text-prompted speaker verification system using the HMM-based speech 

synthesis system. 

 

Figure: Imposture using the HMM-based speech synthesis system. 
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7.1 Overview of Imposture Using the HMM-Based Speech 

Synthesis System 

An overview of imposture against a speaker verification system using the HMM-based 

speech synthesis system is shown in Fig. 7.1. Since most of speaker verification systems 

are based on statistical models such as HMM or Gaussian mixture model (GMM), and 

text-prompted speaker verification has shown to be robust to recorded speech, a text-

prompted speaker verification system based on HMM is adopted as a reference system. 

It is assumed that the impostor can record several utterances spoken by a customer of the 

speaker verification system and train the speech synthesis system using the recorded 

speech before imposture. The impostor inputs the target speaker’s ID to the verification 

system, and then inputs synthetic speech corresponding to the prompted text. The speaker 

verification system verifies speaker characteristics and the text of input speech and 

decides to accept or reject. In the verification procedure, normalized log-likelihood Ls(O) 

is calculated as follows[56], 

 

7.2 Experimental Conditions 

7.2.1 Speech Database 

Phonetically balanced Japanese sentences from ATR Japanese speech database was used 

for training and testing. The database consists of sentence data uttered by 20 male 

speakers; 10 speakers were used as customers and the remainder were used as impostors. 

Each speaker uttered 150 sentences. The sentence set was divided into 3 subsets, A-, B-

, and C-sets, where each subset contained 50 sentences. A-set was used for training the 

speaker verification system and for determination of decision thresholds for normalized 

log-likelihood, B-set was used for training the speech synthesis system, and C-set was 

used as test sentences. Speech signals sampled at 20kHz were down sampled to 10kHz 

and labeled into 48 phonemes (including silence and pause) based on phoneme labels 

included in the database. Both the speech synthesis system and the speaker verification 
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system used the same phoneme set and the same phoneme transcriptions for test 

sentences. 

7.2.2 Speaker Verification System 

The speaker verification system was trained using A-set. Speech signals were windowed 

by a 25.6 ms Blackman window with a 5 ms shift, and the cepstral coefficients were 

calculated by 15th order LPC analysis. The feature vector, 

 

Figure 7.2: False rejection and acceptance rates as functions of the values of the decision 

threshold for training data. 

consisted of 16 cepstral coefficients including the zeroth coefficient, and their deltas and 

delta-deltas. For each customer, a set of speakers dependent (SD) phoneme models was 

trained using 50 sentences. A set of speakers independent (SI) phoneme models was also 

trained using all customers’ training sentences. Each phoneme model was a 3-state 1-, 2-

, or 3-mixture left-to-right model with diagonal covariance matrices. Because of limited 

training data, there were some SD phoneme models which remained untrained. In such 

cases, SI phoneme models were used as SD models. A speaker independent threshold 

was determined for each model structure to equalize the false rejection rate (FRR) for the 

customer and the false acceptance rate (FAR) for other speakers in the training data. 

However, as shown in Fig. 7.2, which shows the FAR and the FRR for training data using 

3-mixture models, there existed a region in which both the FAR and the FRR were equal 

to 0% (denoted by the gray area). In such case, a value at the center of the region was 

adopted as the threshold. 
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7.2.3 Speech Synthesis System 

The speech synthesis system was trained using B-set. Speech signals were windowed by 

a 25.6 ms Blackman window with a 5 ms shift, and the mel-cepstral coefficients were 

calculated by the 15th order mel-cepstral analysis. The feature vector consisted of 16 

mel-cepstral coefficients including the zeroth coefficient, and their deltas and delta-

deltas. It is noted that the feature parameters used in the speech synthesis system were 

different from the speaker verification system. 

Phoneme models were 2-, 3-, or 4-state single-mixture left-to-right monophone models 

with diagonal covariance matrices, and trained using 1, 3, 5, or 50 sentences uttered by 

customers of the speaker verification system by the EM algorithm in which speaker 

independent (SI) models were used as initial models. SI models were trained using 50 

sentences in B-set uttered by 10 non-customer speakers. As well as the speaker 

verification system, SI phoneme models were used instead of untrained SD phoneme 

models. It is noted that this training procedure can be equivalent to speaker adaptation 

using the MAP-VFS algorithm with τ = 0 for the MAP estimation and s = 0 for the VFS 

algorithm. In the synthesis procedure, state durations were set to means of state duration 

densities obtained from training data. White noise was used as an excitation of the MLSA 

filter for both voiced and unvoiced phonemes, since most speaker verification systems 

utilize only spectral information. 
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Chapter 8 

Conclusions and Future Works 
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This thesis has described a novel approach to text-to-speech synthesis (TTS) based on 

hidden Markov model (HMM). There have been several attempts proposed to utilize 

HMMs to TTS systems. The most distinguishable point of the proposed approach is that 

speech parameter sequences are generated from HMMs themselves based on maximum 

likelihood criterion. Hence, several techniques proposed in speech recognition area to 

improve performance of HMM-based speech recognition, such as context dependent 

modeling and speaker adaptation, are applicable to the proposed HMM-based TTS 

system. In fact, it has been shown that quality of synthetic speech improves by using 

triphone models, and that speaker individuality of synthetic speech can be converted to 

the arbitrarily given target speaker by applying a speaker adaptation technique.  

In the proposed HMM-based TTS system, dynamic features play an important role in 

generation of speech parameter sequences. Without dynamic features, generated spectral 

sequences have discontinuities at the state transitions which result in clicks in synthetic 

speech. On the other hand, by considering relationship between static and dynamic 

parameters during parameter generation, smooth spectral sequences are generated 

according to the statistics of static and dynamic parameters modeled by HMMs, and 

natural sounding speech without clicks is synthesized. To synthesize speech, 

fundamental frequency (F0) patterns are also required to be modeled and generated. The 

conventional discrete or continuous 

HMMs, however, cannot be applied for modeling F0 patterns, since values of F0 are not 

defined in the unvoiced regions, that is, observation sequences of F0 patterns are 

composed of one-dimensional continuous values and a discrete symbol which represents 

“unvoiced.” To overcome this problem, the multi-space probability distribution HMM 

(MSD-HMM) has been proposed so as to be able to model sequences of observation 

vectors with variable dimensionality including zero-dimensional observations, i.e., 

discrete symbols, and a decision-tree based context clustering technique has been 

extended for the MSD-HMM.  

It has been shown that spectral parameter sequences and F0 patterns can be modeled and 

generated in a unified framework by using the MSD-HMM. Since it has been shown that 

the HMM-based speech synthesis system has an ability to synthesize speech with 
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arbitrarily given speaker’s voice characteristics, the HMM-based TTS system can be 

considered to be applicable to imposture against speaker verification systems. From this 

point of view, several experiments have been conducted. As a result, it has been shown 

that it is difficult to distinguish synthetic speech from natural speech in the current 

framework of speaker verification using statistical models such as GMM or HMM.  

Finally, a speaker independent HMM-based phonetic vocoder has been developed. 

HMM-based speech synthesis can be considered as the reverse procedure of HMM-based 

speech recognition. Thus, by combining the HMM based speech recognition system and 

the HMM-based speech synthesis system, an HMM-based very low bit rate speech coder 

can be constructed, in which only phoneme indexes and state durations are transmitted 

as spectral information. In addition, a technique to adapt HMMs used in the speech 

synthesis system has been developed to reproduce speaker individuality of input speech. 

Although the HMM-based TTS system has been shown to be able to synthesize natural 

sounding speech, there is room to improve quality of synthetic speech. For example, 

excitation signals used in the HMM-based TTS system are composed of pulse trains for 

voiced regions and white noise for unvoiced regions. However, residual signals cannot 

be modeled by such a simple excitation model. Thus, improvement of the excitation 

model will result in increase in quality of synthetic speech. Spectral modeling and the 

parameter generation algorithm should also be improved since spectra modeled by HMM 

are flattened comparing to real spectra by averaging spectra in several frames. 

 To realize high-quality human-computer communication with voice, TTS systems are 

required to have ability to generate natural sounding speech with arbitrary speaker’s 

voice characteristics and various speaking styles. Although it has been shown that the 

HMM-based TTS system can synthesize speech with various speakers’ voice 

characteristics, synthesizing speech with various speaking styles are remained 

uninvestigated. It is required to establish techniques to synthesize speech with various 

speaking styles, as well as to construct speech database which contains speech with 

various speaking styles.  

The parameter generation algorithm is applicable to not only speech parameters but also 

any parameter sequences which can be modeled by HMMs. In fact, it has been proposed 
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in that lip motion synchronizing to speech can be synthesized. Synthesizing other 

motions, such as sign languages, using the same framework of the HMM-based TTS 

system will also be investigated. 

Although the HMM-based TTS system has been shown to be able to synthesize natural 

sounding speech, there is room to improve quality of synthetic speech. For example, 

excitation signals used in the HMM-based TTS system are composed of pulse trains for 

voiced regions and white noise for unvoiced regions. However, residual signals cannot 

be modeled by such a simple excitation model. Thus, improvement of the excitation 

model will result in increase in quality of synthetic speech. Spectral modeling and the 

parameter generation algorithm should also be improved since spectra modeled by HMM 

are flattened comparing to real spectra by averaging spectra in several frames.  

To realize high-quality human-computer communication with voice, TTS systems are 

required to have ability to generate natural sounding speech with arbitrary speaker’s 

voice characteristics and various speaking styles. Although it has been shown that the 

HMM-based TTS system can synthesize speech with various speakers’ voice 

characteristics, synthesizing speech with various speaking styles are remained 

uninvestigated. It is required to establish techniques to synthesize speech with various 

speaking styles, as well as to construct speech database which contains speech with 

various speaking styles. 

The parameter generation algorithm is applicable to not only speech parameters but also 

any parameter sequences which can be modeled by HMMs. In fact, it has been proposed 

in[47],[48] that lip motion synchronizing to speech can be synthesized. Synthesizing 

other motions, such as sign languages, using the same framework of the HMM-based 

TTS system will also be investigated. 
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