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ABSTRACT 

 

 
A dynamic finite element approach for free vibration analysis of generally laminated composite 

beams is introduced on the basis of first order shear deformation theory. The effect of Poisson 

effect, bending and torsional deformations, couplings among extensional, shear deformation and 

rotary inertia are comprised in the formulation. The dynamic stiffness matrix is defined based on 

the exact solutions of the differential equations of motion governing the free vibration of 

generally laminated composite beam. The influences of Poisson effect, material anisotropy, 

slender ratio, shear deformation and boundary condition on the natural frequencies of the 

composite beams are analyze in detail by specific carefully favored examples. The natural 

frequencies and mode shapes of numerical results are presented and, whenever possible, 

compared to those previously published solutions in order to describe the correctness and 

accuracy of the present approach. 

 
Free vibration analysis of laminated composite beams is carried out using higher order shear 

deformation theory. Two-node, finite elements of eight degrees of freedom per node, based on 

the theories, are presented for the free vibration analysis of the laminated composite beams in 

this project work. Numerical results have been computed for various ply orientation sequence 

and number of layers and for various boundary conditions of the laminated composite beams and 

compared with the results of other higher order theories available in literature. The comparison 

study shows that the present considered higher order shear deformation theory forecast the 

natural frequencies of the laminated composite beams better than the other higher order theories 

considered. 

 
For considered examples, the coding of the formulation of first order shear deformation theory 

and higher order shear deformation theory (two-node , finite elements of eight degree of freedom 

per node) done by the help of MATLAB and ANSYS 12 software package. 

 
Keywords: - shear deformation, slender ratio, natural frequencies, higher order shear deformation 

theory, laminated composite beam and free vibration. 



iv 
 

CONTENTS  

 
Description 

 
Page no. 

Certificate İ 

Acknowledgement ii 

Abstract iii 

Contents iv 

List of figures vi 

List of tables viii 

Chapter 1.Introduction 

1.1 Definitions 

 

1 

1.2 Fibres 2 

1.2.1 Glass fibres 3 

1.2.2 Carbon fibres 3 

1.2.3 Aramid fibres 4 

1.2.4 Boron fibres 4 

1.2.5 Ceramic fibres 4 

1.3 Polymeric matrix 5 

1.3.1 Polyster resins 5 

1.3.2 Epoxy resins 5 

1.3.3 Vinyl ester resins 6 

1.3.4 Phenolic resins 6 



v 
 

Application of composites 6 

The Timoshenko Beam Theory 7 

Present Investigation 8 

Chapter 2 Literature Review 9 

2.1 Outline of the present work 17 

Chapter 3 Theory and Formulation 

First order shear deformation theory 18 

Dynamic finite element formulation 25 

Higher order shear deformation theory 35 

Analytical solution of the equation of motion 43 

Finite element formulation 45 

Derivation of stiffness and consistent mass matrices 48 

Equations of motion 50 

Chapter 4 Computer Program 

Computer program for the laminated composite beam 51 

Using MATLAB to design and analyze composite laminate beam 51 

Using ANSYS (12) to design and analyze composite laminate beam 54 

4.5 Procedure in modeling ANSYS 57 

Chapter 5 Results and Discussion 64 

Chapter 6 Conclusion and Scope for the future work 94 

Chapter 7 References 95 



 

Chapter 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 



1  

INTRODUCTION 
 

 

 

DEFINITIONS [56]:- 

 
A composite material is defined as a material system which consists of a mixture or a 

combination of two or more distinctly different materials which are insoluble in each other and 

differ in form or chemical composition. 

Thus, a composite material is labeled as any material consisting of two or more phases. Many 

combinations of materials termed as composite materials, such as concrete, mortar, fiber 

reinforced plastics, fibre reinforced metals and similar fibre impregnated materials. 

Two- phase composite materials are classified into two broad categories: particulate composites 

and fibre reinforced composites. Particulate composites are those in which particles having 

various shapes and sizes are dispersed within a matrix in a random fashion. Examples as mica 

flakes reinforced with glass, lead particles in copper alloys and silicon carbon particles in 

aluminium. 

Particulate composites are used for electrical applications, welding, machine parts and other 

purposes. 

Fibre reinforced composite materials consists of fibres of significant strength and stiffness 

embedded in a matrix with distinct boundaries between them. Both fibres and matrix maintain 

their physical and chemical identities, yet their combination performs a function which cannot be 

done by each constituent acting singly. fibres of fibre reinforced plastics (FRP) may be short or 

continuous. It appears obvious that FRP having continuous fibres is indeed more efficient. 

Classification of FRP composite materials into four broad categories has been done accordingly 

to the matrix used. They are polymer matrix composites, metal matrix composites, ceramic 

matrix composites and carbon/carbon composites. Polymer matrix composites are made of 

thermoplastic or thermoset resins reinforced with fibres such as glass, carbon or boron. A metal 

matrix composite consists of a matrix of metals or alloys reinforced with metal fibres such as 

boron or carbon. Ceramic matrix composites consist of ceramic matrices reinforced with ceramic 
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fibres such as silicon carbide, alumina or silicon nitride. They are mainly effective for high 

temperature applications. 

 

 

Table 1 Classification of FRP composite materials [1] 
 
 

Matrix type Fibres Matrix 

Polymer E-glass 

S-glass 

Carbon(graphite) 

Kevlar 

Boron 

Epoxy 

Polyimide 

Thermoplastics 

Polyester 

Polysulfone 

Metal Boron 

Carbon (graphite) 

Silicon carbide 

Alumina 

Aluminium 

Magnesium 

Titanium 

Copper 

Ceramic Silicon carbide 

Alumina 

Silicon nitride 

Silicon carbide 

Alumina 

Glass ceramic 

Silicon nitride 

Carbon Carbon Carbon 

 

Of all the types of composites discussed above, the most important is the fibre reinforced 

composites this is form the application point of view. This project is deal with fibre reinforced 

polymer matrix composite materials. 

Fibres[56] :- 

 
Materials in fibre form are stronger and stiffer than that used in a bulk form. There is a likely 

presence of flaws in bulk material which affects its strength while internal flaws are mostly 

absent in the case of fibres. Further , fibres have strong molecular or crystallographic alignment 
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and are in the shape of very small crystals. Fibres have also a low density which is 

disadvantageous. 

Fibres is the most important constituent of a fibre reinforced composite material. They also 

occupy the largest volume fraction of the composite. Reinforcing fibres as such can take up only 

its tensile load. But when they are used in fibre reinforced composites, the surrounding matrix 

enables the fibre to contribute to the major part of the tensile, compressive, and flexural or shear 

strength and stiffness of FRP composites. 

Glass fibres[56] 

 
The most common fibre used in polymeric fibre reinforced composites is the glass fibre. The 

main advantage of the glass fibre is its low cost. Its other advantage are its high tensile strength, 

low chemical resistance and excellent insulating properties. Among its disadvantages are its low 

tensile modulus somewhat high specific gravity, high degree of hardness and reduction of tensile 

strength due to abrasion during handling. Moisture decreases the glass fibre strength. Glass fibres 

are susceptible to sustained loads, as they cannot withstand loads for long periods. 

Two types of glass fibres are used in FRP industries. They are E-glass and S-glass . E-glass has 

the lowest cost among all fibres. 

S-glass has high tensile strength. Its typical composition is 65% SiO2 , 25% Al2O3 and 10% 

MgO. The cost of s-Glass is 20-30 times that of E-glass. The tensile strength of S-glass is 33% 

greater and the modulus of elasticity is 20% higher than that of E-glass. The principal advantages 

of S-glass are its high strength-to-weight ratio, its superior strength relation at elevated 

temperature and its high fatigue limit. In spite of its high cost, its main application area is in 

aerospace components such as rocket mortars. 

Carbon fibres[56] 

 
Carbon fibres are charactyerised by a combination of high strength, high stiffness and light 

weight. The advantages of carbon fibres are their very high tensile strength-to-weight ratio, high 

tensile modulus-to-weight ratio, very low coefficient of thermal expansion and high fatigue 

strength. The disadvantages are their low impact resistance and high electrical conductivity. Due 
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to the high cost the use of the carbon fibres is justified only in weight critical structures, that is 

mostly applied to aerospace industry. 

Aramid fibres[56] 

 
Kevlar aramid is made of carbon , hydrogen, oxygen and nitrogen and is essentially an aromatic 

organic compound. The advantages of aramid fibres are their low density, high tensile strength 

and low cost. 

Characteristics of Kevlar 49 are its high strength and stiffness, light weight, vibration damping, 

resistance to damage, fatigue and stress ruptures. Another variety Kevlar 29 which is of low 

density and high strength. Kevlar 29 is used in ropes, cables and coated fabrics for inflatables. 

The principal disadvantages of aramid fibres are their low compressive strength and the 

difficulty in cutting or machining. For structures or structural components where compression 

and bending are predominant such as in a shell, aramid fibres can be used only when it is 

hybridized with glass or carbon fibres. 

A more advanced variety of Kevlar fibre is Kevlar 149. Of all commercially available aramid 

fibres, it has the highest tensile modulus as it has 40% higher modulus than Kevlar 49.   The 

strain at failure for Kevlar 149 is; however, lower than that of Kevlar 49. Aramid fibres are 

costlier than E-glass, but are cheaper than carbon fibres. 

Boron fibres[56] 

 
Boron fibres are characterized by their very high tensile modulus. Boron fibres have relatively 

large diameters and due to this they are capable of withstanding large compressive stress and 

providing excellent resistance to buckeling. Boron fibres are , however , costly and in fact are 

costlier than most varities of carbon fibres. The application area of boron fibres at present is 

restricted to aerospace industries only. 

Ceramic fibres[56] 

 
Ceramic fibres are mainly used in application areas dealing with elevated temperature. Examples 

of ceramic fibres are silicon carbide and aluminium oxide. Ceramic fibres has an advantage in 
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that they have properties such as high strength, high elastic modulus with high temperature 

capabilities and are free from environmental attack. 

Polymeric matrix[56] 

 
Polymers are divided into two broad categories: thermoplastic and thermoset. Thermoplastic 

polymers are those which are heat softened ,melted and reshaped as many times as desired. But a 

thermoset polymer cannot be melted or reshaped by the application of heat or pressure. 

The advantages of thermoplastic matrices are their improved fracture toughness over the 

thermoset matrix and their potential of much lower cost in the manufacturing of finished 

composites. 

Traditionally, thermoset polymers are widely used as a matrix material for fibre reinforced 

composites in structural composite components. Thermoset polymers improve thermal stability 

and chemical resistance. 

For the purpose of a simple classification, we may divide the thermosets into five categories:- 

 
(1) Polyster resin, 

(2) Epoxy resin, 

(3) Vinyl ester resin, 

(4) Phenolic resin and 

(5) High performance resin. 

 
Polyster resins[56] 

 
The most commonly used resin in glass reinforced plastic construction is the polyster resin and 

they have exhibited good performance. The main advantages of polyester resins are their 

reasonable cost and ease with which they can be used. 

Epoxy resins[56] 

 
Epoxy resins are mostly used in aerospace structures for high performance applications. It is also 

used in marine structures, rarely though, as cheaper varieties of resins other than epoxy are 
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available. the extensive use of epoxy resins in industry is due to :- (1) the ease with which it can 

be processed,(2) excellent mechanical properties and (3) high hot and wet strength properties . 

Vinyl ester resins[56] 

 
Vinyl ester resin is superior to polyester resin because it offers greater resistant to water. These 

resins provide superior chemical résistance and superior retention properties of strength and 

stiffness at elevated temperature. In construction and marine industries , vinyl ester resins have 

been widely used in boat construction. 

Phenolic resins[56] 

 
The main characteristics of phenolic resins are their excellent fire resistance properties. As such 

they are now introduced in high temperature application areas. The recently developed cold-cure 

varieties of phenolic resins are used for contact moulding of structural laminates. 

Phenolic resins have inferior mechanical properties to both polyester resins and epoxy resins, but 

have higher maximum operating temperature, much better flame retardant and smoke and toxic 

gas emission characteristics. Due to the above advantages , phenolic resins are the only matrix 

used in aircraft interior.phenolic resins are increasingly used in internal bulkheads, decks and 

furnishings in ships. 

Application of composites 

 
1. Marine field 

 
2. Aircraft and Space 

 
3. Automotive 

 
4. Sporting goods 

 
5. Medical Devices 

 
6. Commercial applications. 
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The Timoshenko Beam Theory 

 
It is well known the classical theory of Euler–Bernoulli beam assumes that- 

 
(1)  the cross-sectional plane perpendicular to the axis of the beam remains plane after 

deformation (assumption of a rigid cross-sectional plane); 

 
(2) The deformed cross-sectional plane is still perpendicular to the axis after deformation. 

 

 
The classical theory of beam neglects transverse shearing deformation where the transverse shear 

stress is determined by the equations of equilibrium. It is applicable to a thin beam. For a beam 

with short effective length or composite beams, plates and shells, it is inapplicable to neglect the 

transverse shear deformation. In 1921, Timoshenko presented a revised beam theory considering 

shear deformation1 which retains the first assumption and satisfies the stress-strain relation of 

shear. 

 
Advantages:- 

 

 
1. High resistance to fatigue and corrosion degradation. 

 

2. High ‗strength or stiffness to weight‘ ratio. 

 

3. High resistance to impact damage. 

 

4. Improved friction and wear properties. 

 

5. Improved dent resistance is normally achieved. Composite panels do not sustain 
damage as easily as thin gage sheet metals. 

 

6. Due to greater reliability, there are fewer inspections and structural repairs. 
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PRESENT INVESTIGATION 

 
In the current investigation the main objective is to find out the free vibration of generally 

laminated composite beams based on first-order shear deformation theory and derived through 

the use of Hamilton‘s principle. The Poisson effect, rotary inertia, shear deformation and 

material coupling among the bending, extensional and torsional deformations are embraced in 

the formulation. A dynamic stiffness matrix is made to solve the free vibration of the generally 

laminated composite beams [54]. The dynamic finite element method deals with the mass 

distribution within a beam element exactly and thus it provides accurate dynamic characteristics 

of a composite beam. Natural frequencies and mode shapes are obtained for the generally 

laminated composite beams. The natural frequencies are investigated and comparisons of the 

current results with the available solutions in literature are presented [54]. 

Also the current investigation is based on the higher order shear deformation theories, for the 

dynamic analysis of the simply supported laminated composite beam. Numerical results have 

been computed for various boundary conditions for the homogeneous and laminated composites 

beams and the numerical results are compared with the results of other theories available in 

literature [54, 55]. 

After the comparisons of results we noticed that the theories predict the natural frequencies of 

the beams better than the other higher order shear deformation theories [55]. 

Apart from the presentation of analytical solutions to the vibration problems of the composite 

laminated beams, two node finite elements of eight degrees of freedom per node are also 

investigated in this present analysis to determine the natural frequencies of simply-supported and 

clamped- free laminated composite beams for which analytical solutions cannot be obtained 

using the higher order shear deformation theories [55]. Numerical results obtained for the above 

problems compared to the analytical and finite element solutions available in the literature [54, 

55]. 

The present results are compared with solutions available in the literature and obtained by the 

help of MATLAB and ANSYS software. 



 

Chapter 2 

 

 

 

 

 
 

LITERATURE REVIEW 
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LITERATURE REVIEW 

 
The fiber-reinforced composite materials are ideal for structural applications where high 

strength-to-weight and stiffness-to-weight ratios are required. Composite materials can be 

tailored to meet the particular requirements of stiffness and strength by altering lay-up and fiber 

orientations. The ability to tailor a composite material to its job is one of the most significant 

advantages of a composite material over an ordinary material. So the research and development 

of composite materials in the design of aerospace, mechanical and civil structures has grown 

tremendously in the past few decades. It is essential to know the vibration characteristics of these 

structures, which may be subjected to dynamic loads in complex environmental conditions. If the 

frequency of the loads variation matches one of the resonance frequencies of the structure, large 

translation/torsion deflections and internal stresses can occur, which may lead to failure of 

structure components. A variety of structural components made of composite materials such as 

aircraft wing, helicopter blade, vehicle axles, and turbine blades can be approximated as 

laminated composite beams, which requires a deeper understanding of the vibration 

characteristics of the composite beams. The practical importance and potential benefits of the 

composite beams have inspired continuing research interest. A number of researchers have been 

developed numerous solution methods in recent 20 years. 

 

 
Raciti and Kapania [2] collected a report of developments in the vibration analysis of laminated 

composite beams. 

 
Chandrashekhara et al. [3] found the accurate solutions based on first order shear deformation 

theory including rotary inertia for symmetrically laminated beams. 

The laminated beams by a systematic reduction of the constitutive relations of the three- 

dimensional anisotropic body and found the basic equations of the beam theory based on the 

parabolic shear deformation theory represented by Bhimaraddi and Chandrashekhara [4]. 

 
A third-order shear deformation theory for static and dynamic analysis of an orthotropic beam 

incorporating the impact of transverse shear and transverse normal deformations developed by 

Soldatos and Elishakoff [5]. 
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The exact solutions for symmetrically laminated composite beams with 10 different boundary 

conditions, where shear deformation and rotary inertia were considered in the analysis developed 

by Abramovich [6]. 

 
Hamilton‘s principle to calculate the dynamic equations governing the free vibration of 

laminated composite beams. The impacts of transverse shear deformation and rotary inertia were 

included, and analytical solutions for unsymmetrical laminated beams were obtained by applying 

the Lagrange multipliers method developed by Krishnaswamy et al. [7]. 

 
The free vibration behavior of laminated composite beams by the conventional finite element 

analysis using a higher-order shears deformation theory. The Poisson effect, coupled extensional 

and bending deformations and rotary inertia are considered in the formulation studied by 

Chandrashekhara and Bangera [8]. 

 
Abramovich and Livshits [9] presented the free vibration analysis of non-symmetric cross-ply 

laminated beams based on first-order shear deformation theory. 

 
Khdeir and Reddy [10] evolved the analytical solutions of various beam theories to study the free 

vibration behavior of cross-ply rectangular beams with arbitrary boundary conditions. 

 
Biaxial bending, axial and torsional vibrations using the finite element method and the first-order 

shear deformation theory examined by Nabi and Ganesan [11]. 

 
The analytical solutions for laminated beams based on first-order shear deformation theory 

including rotary inertia obtained by Eisenberger et al. [12]. 

 
Banerjee and Williams [13] evolved the exact dynamic stiffness matrix for a uniform, straight, 

bending–torsion coupled, composite beam without the effects of shear deformation and rotary 

inertia included. 
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Teboub and Hajela [14] approved the symbolic computation technique to analyze the free 

vibration of generally layered composite beam on the basis of a first-order shear deformation 

theory. The model used considering the effect of Poisson effect, coupled extensional, bending 

and torsional deformations as well as rotary inertia. 

 
An exact dynamic stiffness matrix for a composite beam with the impacts of shear deformation, 

rotary inertia and coupling between the bending and torsional deformations included presented 

by Banerjee and Williams [15]. 

 
An analytical method for the dynamic analysis of laminated beams using higher order refined 

theory developed by Kant et al. [16] . 

 
Shimpi and Ainapure [17] presented the free vibration of two-layered laminated cross-ply beams 

using the variation ally consistent layer wise trigonometric shear deformation theory. 

 
The in-plane and out-of-plane free vibration problem of symmetric cross-ply laminated 

composite beams using the transfer matrix method analyzed by Yildirim et al. [18]. 

 
Yildirim et al. [19] examined the impacts of rotary inertia, axial and shear deformations on the 

in-plane free vibration of symmetric cross-ply laminated beams. 

 
The stiffness method for the solution of the purely in-plane free vibration problem of symmetric 

cross-ply laminated beams with the rotary inertia, axial and transverse shear deformation effects 

included by the first-order shear deformation theory developed by Yildirim [20]. 

 
Mahapatra et al. [21] presented a spectral element for Bernoulli–Euler composite beams. 

 
 

Ghugal and Shimpi [22] preposed a review of displacement and stress-based refined theories for 

isotropic and anisotropic laminated beams and discussed various equivalent single layer and 

layer wise theories for laminated beams. 
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Higher-order mixed theory for determining the natural frequencies of a diversity of laminated 

Simply-Supported beams presented by Rao et al. [23] . 

 
A new refined locking free first-order shear deformable finite element and demonstrated its 

utility in solving free vibration and wave propagation problems in laminated composite beam 

structures with symmetric as well as asymmetric ply stacking proposed by Chakraborty et al. 

[24]. 

 
A spectral finite element model for analysis of axial– flexural–shear coupled wave propagation 

in thick laminated composite beams and derived an exact dynamic stiffness matrix proposed by 

Mahapatra and Gopalakrishnan [25]. 

 
A new approach combining the state space method and the differential quadrature method for 

freely vibrating laminated beams based on two-dimensional theory of elasticity proposed by 

Chen et al. [26]. 

 
Chen et al. [27] reported a new method of state space-based differential quadrature for free 

vibration of generally laminated beams. 

 
Ruotolo [28] proposed a spectral element for anisotropic, laminated composite beams. The 

axial-bending coupled equations of motion were derived under the assumptions of the first-order 

shear deformation theory and the spectral element matrix was formulated. 

 

 

A two-noded curved composite beam element with three degrees-of-freedom per node for the 

analysis of laminated beam structures. The flexural and extensional deformations together with 

transverse shear deformation based on first-order shear Deformation theories were incorporated 

in the formulation. Also, the Poisson effect was incorporated in the formulation in the beam 

constitution equation presented by Raveendranath et al. [29]. 
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A complete set of equations governing the dynamic behavior of pre-twisted composite space 

rods under isothermal conditions based on the Timoshenko beam theory. The anisotropy of the 

rod material, the curvatures of the rod axis, and the effects of the rotary inertia, the shear, axial 

deformations and Poisson effect were considered in the formulation reported by Yildirim [30] . 

 
Banerjee [31,32] reported the exact expressions for the frequency equation and mode shapes of 

composite Timoshenko beams with cantilever end conditions. The impacts of material coupling 

between the bending and torsional modes of deformation together with the effects of shear 

deformation and rotary inertia was taken into account when formulating the theory. 

 
Bassiouni et al. [33] proposed a finite element model to investigate the natural frequencies and 

mode shapes of the laminated composite beams. The model needed all lamina had the same 

lateral displacement at a typical cross-section, but allowed each lamina to rotate a different 

amount from the other. The transverse shear deformation was included. 

 
A new variational consistent finite element formulation for the free vibration analysis of 

composite beams based on the third-order beam theory proposed by Shi and Lam [34]. 

 
Chen et al. [35] presented a state space method combined with the differential quadrature method 

to examined the free vibration of straight beams with rectangular cross-sections on the basis of 

the two-dimensional elasticity equations with orthotropy. 

 
The vibration analysis of cross-ply laminated beams with different sets of boundary conditions 

based on a three degree-of-freedom shear deformable beam theory. The Ritz method was 

adopted to determine the free vibration frequencies presented by Aydogdu [36]. 

 
A refined two-node, 4 DOF/node beam element based on higher-order shear deformation theory 

for axial–flexural– shear coupled deformation in asymmetrically stacked laminated composite 

beams. The shape function matrix used by the element satisfied the static governing equations of 

motion developed by Murthy et al. [37]. 
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The free vibration behavior of symmetrically laminated fiber reinforced composite beams with 

different boundary conditions. The impacts of shear deformation and rotary inertia were 

considered and the finite-difference method was used to solve the partial differential equations 

describing the free vibration motion analyzed by Numayr et al. [38]. 

 
The free vibration analysis of laminated composite beams using two higher-order shear 

deformation theories and finite elements based on the theories. Both theories considered a quintic 

and quartic variation of in plane and transverse displacements in the thickness coordinates of the 

beams, respectively, and satisfied the zero transverse shear strain/stress conditions at the top and 

bottom surfaces of the beams developed by Subramanian [39] . 

 
A new layer wise beam theory for generally laminated composite beam and contrasted the 

analytical solutions for static bending and free vibration with the three-dimensional elasticity 

solution of cross-ply laminates in cylindrical bending and with three-dimensional finite element 

analysis for angle-ply laminates developed by Tahani [40] . 

 
A 21 degree-of-freedom beam element, based on the FSDT, to study the static response, free 

vibration and buckling of unsymmetrical laminated composite beams. They enlisted an accurate 

model to obtain the transverse shear correction factor preposed by Goyal and Kapania [41]. 

 
Finite elements have also been developed based on Timoshenko beam theory [42]. Most of the 

finite element models developed for Timoshenko beams possess a two node-two degree of 

freedom structure based on the requirements of the variation principle for the Timoshenko‘s 

displacement field. 

 
A Timoshenko beam element showing that the element converged to the exact solution of the 

elasticity equations for a simply supported beam provided that the correct value of the shear 

factor was used proposed by Davis et al. [43]. 
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Thomas et al. [44] proposed a new element of two nodes having three degrees of freedom per 

node, the nodal variables being transverse displacement, shear deformation and rotation of cross- 

section. The rates of convergence of a number of the elements were compared by calculating the 

natural frequencies of two cantilever beams. Further this paper gave a brief summary of different 

Timoshenko beam elements. 

 
For the first time a finite element model with nodal degrees of freedom which could satisfy all 

the forced and natural boundary conditions of Timoshenko beam. The element has degrees of 

freedom as transverse deflection, total slope (slope due to bending and shear deformation), 

bending slope and the first derivative of the bending slope presented by Thomas and Abbas [45]. 

 
A second-order beam theory requiring two coefficients, one for cross-sectional warping and the 

other for transverse direct stress, was developed by Stephen and Levinson [46]. 

 
A beam theory for the analysis of the beams with narrow rectangular cross-section and showed 

that his theory predicted better results when compared with elasticity solution than Timoshenko 

beam theory. Though this required no shear correction factor, the approach followed by him to 

derive the governing differential equations was variationally inconsistent developed by Levinson 

[47]. 

 
Later Bickford [48] represented Levinson theory using a variational principle and also showed 

how one could obtain the correct and variationally consistent equations using the vectorial 

approach. Thus the resulting differential equation for consistent beam theory is of the sixth order, 

whereas that for the inconsistent beams theory is of the fourth-order. 

 
An improved theory in which the in-plane displacement was assumed to be cubic variation in the 

thickness coordinate of the beam whereas the transverse displacement was assumed to be the 

sum of two partial deflections, deflection due to bending and deflection due to transverse shear. 

This theory does not impacts the effect of transverse normal strain and does not satisfy the zero 

strain/stress conditions at the top and bottom surfaces of the beam reported by Krishna Murty 

[49] . 
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A higher order beam finite element for bending and vibration problems of the beams. In this 

formulation, the theory imagines a cubic variation of the in-plane displacement in thickness co- 

ordinate and a parabolic variation of the transverse shear stress across the thickness of the beam. 

Further the theory satisfies the zero shear strain conditions at the top and bottom surfaces of the 

beam and neglects the effect of the transverse normal strain developed by Heyliger and Reddy 

[50]. 

 
A C0 finite element model based on higher order shear deformation theories including the effect 

of the transverse shear and normal strain and the finite element fails to satisfy the zero shear 

strain conditions at the top and bottom surfaces of the beam proposed by Kant and Gupta [51]. 

 
The free vibration analysis of the laminated composite beams using a set of three higher order 

shear deformation theories and their corresponding finite elements. These theories also fail to 

satisfy the zero-strain conditions at the top and bottom surfaces of the beams. Further the impacts 

of the transverse normal strain were not included in the theories investigated by Marrur and Kant 

[52]. 

 
An analytical solution to the dynamic analysis of the laminated composite beams using a higher 

order refined theory. This model also fails to satisfy the traction- free surface conditions at the 

top and bottom surfaces of the beam but has included the effect of transverse normal strain 

preposed by Kant et al. [53]. 
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2.1 OUTLINE OF THE PRESENT WORK:- 

 
 

In the current investigation the main objective is to find out the free vibration of generally 

laminated composite beams based on first-order shear deformation theory and derived through 

the use of Hamilton‘s principle. The Poisson effect, rotary inertia, shear deformation and 

material coupling among the bending, extensional and torsional deformations are embraced in 

the formulation. A dynamic stiffness matrix is made to solve the free vibration of the generally 

laminated composite beams. The dynamic finite element method deals with the mass distribution 

within a beam element exactly and thus it provides accurate dynamic characteristics of a 

composite beam. Natural frequencies and mode shapes are obtained for the generally laminated 

composite beams. The natural frequencies are investigated and comparisons of the current results 

with the available solutions in literature are presented. For the results software package using for 

the coding and programming is MATLAB and ANSYS 12. 

This thesis contains seven chapters including this chapter. 

A detailed survey of relevant literature is reported in chapter 2. 

 
 

In chapter 3 dynamic analysis of laminated composite beam using first order shear deformation 

theory and higher order theories including finite element method formulation is carried out 

common boundary conditions, such as clamped-free, simply supported, clamped-clamped and 

Clamped- simply supported has been analyzed. 

 
In chapter 4 details of computational approach have been outlined. How to coding in MATLAB 

software and ANSYS 12 have been outlined step – by- step procedure. 

 
In chapter 5 important results (natural frequencies and mode shapes) drawn from the present 

investigations reported in chapters 3 and 4, this chapter including results obtained by MATLAB 

and ANSYS 12 for the various boundary condition of laminated composite beam. 

 
Finally in chapter 6 important conclusions drawn from the present investigations reported in 

chapters 3-5 along with suggestions for further work have been presented. 



 

Chapter 3 

 

 

 

 

 

THEORY AND FORMULATION 
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FIRST ORDER SHEAR DEFORMATION THEORY [54] 

MATHEMATICAL FORMULATION 

 

 

A generally laminated composite beam, is made of many piles of orthotropic materials, principal 

material axis of a ply may be oriented at an angle with respect to the x axis. Consider the origin 

of the beam is on mid-plane of the beam and x-axis coincident with the beam axis. As shown in 

fig.1, 

 

 

 

 

 

 

 

 

 

 
 

h 
 
 
 
 

L 
 

 

Where, 

Fig. 1. Geometry of a laminated composite beam [54] 

 

L= length of the beam, 

b= breadth of the beam, 

h= thickness of the beam. 

Based on first- order shear deformation theory, assumed displacement field for the laminated 

composite beam can be written as- 

u ( x , z , t ) = u 0 ( x , t ) + zθ ( x , t ), 
(1 i) 

v ( x , z , t ) = zψ ( x , t ) , (1j) 

z 

y 

x 

b 
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    
x   



   

w ( x, z , t ) = w 0 ( x, t ) , 

where, u 0=axial displacements of a point on the mid plane in the x-directions, 

w 0= axial displacements of a point on the mid plane in the z-directions 

θ = rotation of the normal to the mid-plane about the y axis, 

ψ = rotation of the normal to the mid-plane about the y axis, 

t = time. 

(1k) 

 

 

 

The strain-displacement relations are given by- (by theory of elasticity)— 

ε x = u0 / x + zθ / x (2i) 

γ x z =  w 0 /  x (2j) 
 

γ xy = ψ 

kx = θ / x 

/ x (2k) 

(2l) 
 

kxy = ψ / x (2m) 

 

 
By the classical lamination theory, the constitutive equations of the laminate can be obtained as- 

 

 

 Nx   A11 A12 A16 B 11 B 12 B 16   ε 0  
Ny A12 A 22 A 26 B 12 B 22 B 26 ε 0

 

     y    
 Nxy   =   A16 A 26 A 66 B 16 B 26 B 66   γ xy   

Mx B 11 B 12 B 16 D 11 D 12 D 16 κ 
     x  
 My   B 12 B 22 B 26 D 12 D 22 D 26   κ y 

 
      

 M xy   B 16 B 26 B 66 D 16 D 26 D 66  κ xy   (3)
 

 
 

Where,(I,j=1,2,6) 
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Nx , Ny and Nxy are the in-plane forces, 

Mx , M y and Mxy are the bending and twisting moments, 

ε x , ε y  and γ xy   are the mid-plane strains, 

κx , κy and κxy are the bending and twisting curvatures, 

Aij , Bij and Dij are the extensional stiffnesses, coupling stiffnesses and bending stiffnesses, respectively. 

 

 
for the case of laminated composite beam, 

N y a n d N x y  , th e in - p la n e fo rc e s a n d th e b e n d in g m o m e n t M y = 0 . 

ε 0 , γ and the curvature κ assumed to be non-zero 
y xy y 

 
 

 

 
 

Then, now equation (3) can be rewritten as- 
 

 

 

 

 
 Nx   

  A11 B11 B16 u0 / x 
 

   

M =    B D D 
    

 
θ / x    

 x   11 11 16 
  

 (4) 
xy B   

  
D

                             
D ψ  / x 

M   16 16 66   
 

 

 

 

 

 

 

Now considering the effect of transverse shear deformation then,- 
 

 

Qxz   = A55γ xz    = A55 (w0 / x + θ ), 
 
 

(5) 
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 

 

 

 

 

 
 

Where,- 

Qxz is the transverse shear force per unit length and 

A B B  A B B  A A B  A A B 

 

 
−1   A A B  

   11 11 16 11 11 16 12 16 12 22 26 22   12 16 12 



B

 D 
 

D 
 

 =B D D −B B D *A A B   B D  
 11 11 16   

11 11 16   12 16 12  26 66 26 *B12 16 12 
           B D D  B B D  B B D  B B D  
B16 D16 D66  16 16 66  26 66 26  22 26 22  26 66 26 

 
 

(6) 

 

 

 
The laminate stiffness coefficients Aij , Bij , Dij (I,j= 1,2,6) and the transverse shear stiffness 

 

 

 
A₅₅ which are functions of laminate ply orientation , material properties and stack sequences, 

 

 

 
are given as- 

 

Aij 

h/ 2 

= 
−h/2 
h/ 2 

 
 

Qijdz 

Bij = 
− h/ 2 

h/ 2 D 

 
 

Qij 

 Q 

zdz 

 
z2dz 

ij = ij 

−h/ 2 

 

(7) 
 

h / 2 

A55 = k 
−h/2 

 
 

Q55 dz 
(8) 

T 
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11 11 12 66 22 

12 11 22 66 12 

22 11 12 66 22 

66 11 22 66 12 66 

 
 
 
 

Where,- 

k is the shear correction factor. 
 

The transformed reduced stiffness constants Qij ( i,j=1,2,6) are given as- 

Q = (Q cos4 φ + 2(Q + 2Q )sin2 φ cos2 φ + Q cos2 φ ) (9i) 

Q = (Q + Q − 4Q )sin2 φ cos2 φ + Q (sin4 φ + cos4 φ ) (9j) 

Q = (Q  sin4 φ + 2 (Q + 2Q )sin2 φ cos2 φ + Q cos4 φ ) (9k) 

Q = (Q − Q − 2Q )sin φ cos3 φ + (Q − Q + 2Q )cosφ sin3 φ (9l) 
16 11 22 66 12 22 66 

 

Q = (Q − Q − 2Q )sin3 φ cosφ + (Q − Q + 2Q )cos3 φ sin φ (9m) 
26 11 22 66 12 22 66 

 

Q = (Q − Q − 2Q − 2Q )sin2 φ cos2 φ + Q (sin4 φ + cos4 φ ) (9n) 

Q = G cos2 φ + G sin2 φ (9o) 
55 13 23 

 

Where,- 
 

∅ is the angle between the fiber direction and longitudinal axis of the beam. 
 

The reduced stiffness constants Q11 , Q12 , Q22 

constants[57]- 

and Q66 can be obtained in terms of the engineering 

 
Q11 

Q12 

Q22 

= 
E1 , 

1−ν12ν 21 

= 
ν12 E2 , 

1−ν12ν 21 

= 
E2 , 

1−ν12ν 21 
 

Q66 = G12 (10) 
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 

 2 

 

 

The total strain energy V of the laminated composite beam given as— 

V = 1 
L 


N ε 

0
 

 
 

κ κ γ  
  x x 

+ M
x x 

+ M
xy   xy 

+ Q
xz   xz b.dx 

0 

 

Substituting ε 0 
, κ , κ and γ values from equation (2) into equation (11) then – 
x x xy xz 

(11) 

V = 1 
L     N u / x + M θ ψ ( θ ) 

2   x 0 x / x + M xy  / x + Qxz  w0 / x + b.dx (12) 
0 

 

Total kinetic energy T of the laminated composite beam is given as – 

1 L h/2 

 
2 2 2 

 
 

T = 
0 − h/2 

ρ 
(u / t ) + (v / t ) + (w / t ) 

 
b.dx.dz (13) 

 

Where,- 
 

ρ is the mass density per unit volume. 
 

Now substituting u, ν and ω from equation (1) into equation (13) and after integration with 

respect to z we get— 

 

1 L 

 
2 2 2 2  

 
T =  I1 (u0 / t ) 

0 

 

 
 

Where,- 

+ I3 (θ / t ) + 2I2 (u0 / t )(θ / t ) + I3 (ψ / t ) + I1 (w0 / t )  
b.dx 

(14) 

 

 

 

I1 = 

h / 2 

 
−h / 2 

h / 2 

 

ρdz 

I2 = ρ 
− h / 2 
h / 2 

zdz 

I3 = ρ 
− h/ 2 

z2dz 

 

(15) 

2 

2 
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−I 0 − I + A 0  + B + B = 0 

−I + B                              0  + D + D = 0 

By the use of Hamilton‘s principle, the governing equations of motion of the laminated 

composite beam can be expressed in the form- 

 

t2 

 (δT − δV )dt = 0 
t1 

 

At t = t1 and t2 - 

 

δ u0 = δ w0 = δθ = δψ = 0 

 
(16) 

 

After substitution the variational operations yields the following governing equation of motion- 

 2u   2θ   2u   2θ   2ψ  
1   2      11

    


                                                                                                      

 11     16     (17i) 

 t 2   t2   x2   x2   x2  

−I 
 2w0  

+ A 
 

 

 2w0  
+ A 

 
 

 θ  
= 0 

 
1   t2 55   x2 55   x (17j) 

      

 2θ   2u     2u     2θ     2ψ   w  
−I3  − I2  0  + B11  0  + D11  + D16   − A

55  0  − A55
θ = 0 (17k) 

 t2   t2   x
2   

  x2   x2   x  

 2ψ   2u   2θ   2ψ  
3   16 

  
 16   66   (17l) 

 t2   x2   x2   x2  

 

Note:- 
 

 

 

If the Poisson effect is ignored, the coefficients in equation (17)[ A11 , B11 , B16 , D11 , D16 , D66 ] 

should be replaced by the laminate stiffness coefficients [ A11 , B11 , B16 , D11 , D16 , D66 ]. 
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1 55 55 

Dynamic finite element formulation [54] 

 

 
Equation (17) have solutions that are separable in time and space, and that the time dependence 

is harmonic, like as- 

u0 ( x,t ) = U ( x)sin ωt, 

w0 ( x, t ) = W ( x)sin ωt, 

θ ( x,t ) = ( x)sin ωt, 

ψ ( x, t ) = ( x)sin ωt, 

 
(18i) 

 
(18j) 

 
(18k) 

 
(18l) 

Where, 

 
ω is the angular frequency, 

 

U ( x) , W ( x) , ( x) and  ( x) are the amplitudes of the sinusoidally varying longitudinal 

displacement, bending displacement, normal rotation and torsional rotation respectively. 

Now after the substitution of equation (18) values in equation (17), the following differential 

eigenvalue problem is obtained:- 

ω2I U + ω2I  + A U + B  + B  = 0 (19i) 
1 2 11 11 16 

 

ω 2 
I W + A W  + A  = 0 (19j) 

ω2 
I  + ω2 

I U + B U  + D  + D   − A W  − A  = 0 (19k) 
3 2 11 11 16 55 55 

 

ω 2 I  + B U  + D   + D   = 0 (19l) 
3 16 16 66 

 

Where the superscript primes denote the derivatives with respect to x. 

The solution to equation (19) are given by- 

U ( x) = Aeκ x 
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4 3 2 1 0 

2 

( 
2

) 

 ( ) 

−   11     66 ) 1  −  +  (  2 2  ))  +(

 )((   

 ) 

 

0 1 3 55 1 2 1 3 

4 55 16  11 11    16     16 11 66 11 16 11  66 

W ( x) = Beκx 

( x) = Ceκ x 

 ( x ) = Deκ x (20) 

After the substitution of equation (20) into equation (19) the equivalent algebraic eigenvalue 

equations are obtained and the equations have non-trivial solutions when the determinant of the 

coefficient matrix of A , B , C and D vanishes. Now consider that determinant is zero , then the 

characteristics equations, which is an eight-order polynomial equation in ĸ :- 

η κ 8 +η κ 6 
+η κ 4 

+η κ 2 
+η  = 0 (21) 

 

Where:-, 

η  = − A (B   D   − 2B  B   D   + B  
2 
D + A  (D   

2  

− D  D   )) (22i) 

 A
55 

D
16 

2 

I
1 
+ B

11 

2 

D
66 

I
1  

− A
55 

D
11 

D
66 

I
1  

+ A
11 (D   

2  

− D  D 
 

) I  +  

η = −
   

 − 2B D (B I + A I )+ 
 

  

11  66 1  2 (22j) 
2 A B D I  

3 

 55  11  66   2 11  66 11 1 55   2  
 A B   I − A A D + D I + B D I + A I  
 

55    11 3 11    55 11 66 3 16 11 1 55   3 

 

        2 2      2             2      

 
η 2 = ω 2 

 A 55 (B16 2 

 

D16 I1 
− D11 D66 I1 − 2B16 D16 I1I2 + 2B11 D66 I1I2 + A55 D66 I2 

A D I B  + B − A + A D   + D I 2A B I 
 

11 16 11 55 11 66 1 55  11 2 
 I3  − A11A55  I3 

2 ω2 
 

   

(22k) 

          D I 2 − I (2B I + A I ) +  
η = ω4  − A I (D I + A I )+  D I (−I 2 + I I )+ I  

  11 1 2 
11 1 55 2 ω 2  

1  55 1 66 1 11 3 
 

66 1 2 1 3 3  A + A I I   

 

 

 

η = I I ω6 (− A I  + (−I 2 + I I 

 

 

 

)ω2 ) 

( 11 55 ) 1 3   

(22l) 

 
(22m) 

16 

ω 
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1 2 3 4 

1 1 2 2 

     

2 1   3 4 2   4 3 1 4 

Now the fourth order polynomial equation for the roots χ must be solved. Where χ=κ² has 

substituted into equation (21) to reduce into a fourth order polynomial equation. The solutions 

can be found as follows- 

 

χ 4 
+ a χ 3 

+ a χ 2 
+ a χ + a = 0 (23) 

 

Where:- 

 

a1 = η3 / η4 
a2 = η2 / η4 
a3 = η1 /η4 
a4 = η0 / η4 

 

 

 
 

(24) 

 

 

 

The fourth- order equation(23) can be factorized as- 

 

 

(χ 2 + p χ + q )(χ 2 + p χ + q ) = 0 (25) 
 

Where:- 
 p1  

= 
1 a  a 2 − 4a + 4λ  

 p  2  1 1 2 1  

 2  

 q1  
= 

1  a1λ1 − 2a3 

 

 
 

 

 

 

 

 
(26) 

 q2  2 λ1  a 2 − 4a + 4λ  
 1 2 1  

 

 
And λ1 is one of the roots of the following equation- 

λ3 − a λ 2 + (a a − 4a ) λ + (4a a − a 2 − a 2a ) = 0 (27) 

Then the roots of equation (23) can be written as- 

 χ1  − p 
  = 

2 
1  

 χ 2  
 χ3  − p 

(28) 

  =
 2  

 χ 4  2 

p 2 

1 

  4  
− q1 

p 2 

2 

4 
− q2 
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−Q 
3 

a 

3 2 

1 2 3 4 5 6 7 8 

2i −1 2i 

1 2 3 4 5 6 7 8 

2i−1 2i 

1 2 3 4 5 6 7 8 

2i −1 2i 

1 2 3 4 5 6 7 8 

2i −1 2i 

The roots of equation (27) can be written as- 

λ = 
a2 + 2 −Q cos(ϑ / 3) 

1 3    

λ =  2 + 2  −Q cos((ϑ + 2π ) / 3) (29) 
2 3    

λ = 
a2 + 2 

 

3 
3
 

 
Where:- 

ϑ = cos−1 
 

R / 

 

  
  

Q = − 
1 (a2 − 3a a +12a ) 
9 2 1   3 4 

R =
 1 (2a3 − 9a a a + 27a2 + 27a2a − 72a a ) 
54 2 1   2   3 3 1  4 2 4 

 
 

D = Q + R 

The general solutions to equations (19) are given by- 

 

 
U ( x ) = A eκ1 x  

+ A e−κ1 x  
+ A eκ 2 x  

+ A e−κ2 x  
+ A eκ3 x  

+ A e−κ3 x  
+ A eκ4 x  

+ A e−κ 4 x
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(30) 

 

4 

=  
j=1 

( A eκ j 
x 

+ A e−κ j 
x ) (31i) 

 

W ( x) = B eκ1x  
+ B e−κ1x  

+ B eκ2 x  
+ B e−κ2 x  

+ B eκ3 x  
+ B e−κ3 x  

+ B eκ4 x  
+ B e−κ4 x

 

4 

=  
j=1 

(B e
κ j x + B e

−κ j x ) (31j) 

 

 ( x) = C eκ1x  
+ C e−κ1x  

+ C eκ2 x  
+ C e−κ2 x  

+ C eκ3x  
+ C e−κ3x  

+ C eκ4 x  
+ C e−κ4 x

 

4 

=  
j=1 

(C e
κ j x + C e

−κ j x ) (31k) 

 

 ( x ) = D eκ1x  
+ D e−κ1x  

+ D eκ2 x  
+ D e−κ2 x  

+ D eκ3 x  
+ D e−κ3 x  

+ D eκ4 x  
+ D e−κ4 x

 

4 

=  
j=1 

(D e
κ j x + D e

−κ j x ) (31l) 

−Q cos((ϑ + 4π ) / 3) 
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= t C 

j j 11   16     j 11   16  j 16 1 16 2 j 

j 55 j 55 j 1 

j 16 j 11 j 1 66  j 3 

Where- 

 
κ1 = 

κ2 = 

κ3 = 

κ4 = 

 

 
The relationship among the constants is given by- 

 

A
2 j −1 

= t 
j 
C

2 j −1 

 

A2 j = t jC2 j (32i) 

B = t‸C 
2 j −1 j  2 j −1 

 

B = t‸C (32j) 
2 j j  2 j 

 

D2 j−1 

 
j 2 j−1 

 

D2 j = t Cj     2 j 
(32k) 

 

 

 

 

 

Where:- (j=1-4) 

t = B  D κ 4 − (B κ 2 + I ω 2 )(D κ 2 + I ω2 ) /  (33i) 

j  16     16  j 
11  j 

2 66  j 3  j 

t‸ = −A κ / (A κ 2 + I ω2 ) (33j) 

t   = κ 2 (B  B κ 2 − A  D   κ  2 + (D   I   + B  I  )ω 2 ) /  (33k) 

 = −B 2κ 4 + ( A κ 2 + I ω 2 )(D κ 2 + I ω 2 ) (33l) 

χ1 

χ2 

χ3 

χ4 
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Q xz 

 
+ 

Sign convention:- 
 

 

 

 

 
 

Nx N y 

 

Mx Mx 
 

 

 

Q
xz 

 
M 

xy 

 

 

 
M 

xy 

 

 
 

 
 

From fig. 2 the expression of normal force Nx (x), shear force Qxz (x), bending moments Mx 

(x) and torque M xy (x) can be obtained from equations (5), (6) and (31) as- 

 
N ( x) = A dU 

+ B
 d 

+ B 
d  

x 11 dx 11 dx 16 dx 

Fig. 2. Sign convention for positive normal force Nx (x), shear force Qxz (x), bending moment Mx 

(x) and torque M xy (x) [54] 

Mxy1 

 

W1 
Qxz1 

W2 
Qxz 2 

M xy 2 

1 
 2 

Mx1 

1 

Nx1 

U1 

Nx 2 

U2 M 

 
x2 

2 

Fig.3. boundary conditions for displacements and forces of composite beam [54] 

+ 

 

+ 
 

+ 



31  

xz  55 55  

D + D 

dU 
+

  
+

 
D66 

= 4 ( A  κ t + B κ + B  κ  t  )*(C eκ j 
x  

− C   e−κ j 
x ) (34i) 

 

j =1 

11  j j 11  j 16  j   j 2 j −1 2 j 

Q ( x) = −
 

A 
dW 

+ A 

 

 dx  
  

= 4 
− ( A  κ  t  + A )*(C eκ j 

x  
+ C   e−κ j 

x ) (34j) 
55  j   j 55 2 j−1 2 j 

j =1 

M (x) = −

 B   dU 

x  11   dx 

 
d d  

11   dx 16   dx  

  

= 4  
− (B  κ t + D κ + D  κ  t  )*(C eκ j 

x  
− C   e−κ j 

x ) (34k) 
11  j j 11  j 16  j   j 2 j −1 2 j 

j=1 

M ( x) = 
 

B d 
xy  16   dx 

D16   dx 

 
d   

 

dx 

 

  

= 4  (B  κ t   + D  κ + D  κ  t  )*(C eκ j 
x  

− C   e−κ j 
x ) (34l) 

 

j =1 

16  j j 16  j 66  j   j 2 j −1 2 j 

 

 

 

 

 

From fig. 3. The boundary conditions for displacements and forces of the laminated composite 

beam are given as— 

 

 
At:- 

 

x =0; 

 

 
U = U1 W = W1  = 1  = 1 

 

 
Nx = −Nx1 Qxz = Qxz1 Mx = Mx1 M xy = M xy1 

(35i) 

+ 
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1 2 3 

 

1 1 2 3 4 

 

 

At:- 
 

x =L; 

 

 
U = U2 W = W2  = 2  = 2 

 

 
Nx = −Nx 2 Qxz = Qxz 2 Mx = Mx 2 M xy = M xy 2 

(35j) 

 

 

 
Substituting equations (35) into equations (31), the nodal displacements defined by fig.(3) can be 

expressed in terms of C as- 

D0 = RC (36) 

Where, D0 is the nodal degree of freedom vector. 

D0 = U1 W1 1 1 U2  W2 2  2 (37i) 

C = C1 C3 C5 C7 C2  C4  C6 C8 (37j) 
 

 
 

t1 t2 t3 t4  t1  t2  t3 

t t t t −t −t −t 
t4  
−t 

 1 2 3 4 1 2 3 4  
 1 1 1 1 1 1 1 1  

t
~    ~      

R =  
1 t2 t3 t4 

κ L κ L κ L 
t 
−κ L 

t 
−κ L 

t 
−κ L 

t4  
−κ L 

t eκ 1L t e 2 t e 3 t e 4 t e 1 t e 2 t e 3 t e 4
 

 1 2 3 4 1 2 3 4  (37k) 

t eκ L t eκ2L t eκ3L 
t eκ4L 

−t e−κ L −t e−κ L −t e−κ L −t e−κ L  

 1 2 3 4 1 2 3 4  

 e
κ1L eκ2L eκ3L eκ4L e−κ1L e−κ2L e−κ3L e−κ4L    


 

~  κ1L   κ2L   κ3L   κ4L ~  −κ1L   −κ2L   −κ3L   −κ4L 

t1e t2e t3e t4e t1e t2e t3e t4e  
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‸ 

1 2 3 
4 1 2 3 

  

‸   

j 11  j j 16 j 66  j j 

 

Substituting equations (35j) into equations (31), the nodal forces defined in fig. 3 can be 

expressed in terms of C as- 

 

 

F0 = H C (38) 

Where, F0 is the nodal force vector. 

F0  = N x1     Qxz1    Mx1    Mxy1      Nx 2     Qxz 2     Mx 2     Mxy 2  (39i) 

 
   −t‸  −t‸  −t‸  −t‸  t‸  t‸  t‸  t‸   
 1 2 3 4 1 2 3 4  

 1 2 

 
 −t −t 

3 4 1 2 3  

 

−t −t t t t  

R =  1 2 3 4 1 2 3 4 
 te  (39j) 

‸  κ1L 
t‸eκ2L t‸eκ3L t‸eκ 4L −t‸e−κ1L −t‸e−κ2 L −t‸e−κ3L −te −κ 4L 

 
1 2 3 4 1 2 3 4 


 −t 



eκ1
 L               

−t


 

e
  κ 2 L −t eκ3 L 

−t eκ 4 L 

−t e−κ L −t e−κ  L −t e−κ  L −t e−κ 4 L  

− 
‸1 

κ L ‸
2
 κ L ‸

3
 

κ L ‸
4
 

1 

κ L ‸
1 

−κ L ‸
2
 

2 

−κ L ‸
3
 

3 

−κ L ‸
4
 −κ4 L   

t1e −t2e −t3e −t4e t1e t2e t3e t4e 

 t~eκ1L t eκ 2L teκ3L t eκ4L −t~e−κ1L −t e−κ2 L −t e−κ3L −t e−κ 4L  

 1 2 3 4 1 2 3 4  

 

 

 
Where, (j=1-6) 

t‸ = A κ t + B  κ + B κ t 
j 11  j j 11  j 16  j j 

 

t j = −( A55κ j t j + A55 ) 

t j  = − (B11κ jt j  + D11κ j  + D16κ j t j ) 

t
 
= (B  κ t + D  κ + D κ t  ) (40) 

t 
        

‸ 
                       

t
                           

‸ 
t 
‸ 

t 
‸ 

t 
‸ 

t 
‸ 

t 
‸ 

t4 

‸ 
t t t t −t −t −t −t 

1~ 2 3  3 ~ 1 □ 2 □ 3 
4 

t  
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0 

Now from the equations (36) and (38) relationship between the nodal force vector and nodal 

degree of freedom vector can be written as- 

 

 

F  = H R
−1 

D  = K  D  (41) 
0 0 0 0 

 

Where, 

 

 

K   = H R
−1

 

 

And K0  is the frequency-dependent dynamic stiffness matrix. 
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HIGHER ORDER SHEAR DEFORMATION THEORY [55] 

MATHAMATICAL FORMULATION 

 

 

 

 
Z 

 
 
 

 
2h 

 
 

 

b 
a 

 

Fig.4. geometry and co-ordinate system of the beam [55] 
 

 

 

 

 

 

. 

u ( x, z,t ) 

(x,z). 

 

and w ( x, z, t ) are the displacement in the x and z directions, respectively, at any point 

 

h = half thickness of the beam, 
 

φi = orientation angle of the ith layer with respect to the x-axis. 

a = length of the beam, 

b = width of the beam. 

Z 

Y 

 

 

X 
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h h 

h h 

w = w   + w   + 
h 

w + (−1) 1− 
h 

 w (3) 

The displacement fields for the first theory are taken as- 

 w z 2  w z 5  w 
u = u 0 − z bn − 

 x 3 h 2 
sh   − 2 

 x 5 h 4  x 

 

 z  2   z  4  
w = wbn + wsh +   w2 + 1 −    w4 (1) 

      

 
 

The displacement fields for the second theory are taken as- 
 

 w  z 2  w  z 5  w 
u = u   − z b n −   sh   −   2   

0  x 3 h 2  x 5 h 4  x 

 
 

 z  4   z  2  
w = wbn + wsh +   w2 + 1 −    w4 (2) 

      
 

Where:  
u0 ( x, t ) Are the displacements due to extension, 

 

wbn (x,t ) Are the displacements due to bending, 
 

wsh ( x, t ) Are displacements due to shear deformation. 

The terms w2 ( x, t ) and w4 ( x, t ) are the higher terms to include sectional wrapping and all these 

variables are measured at the mid surface of the beam z=0. 

The displacement fields of the two theories are combined as follows:- 
 

w z 3 w z 5 w 
u = u − z bn   − sh   − 2  

0 x 3h 2 x 5h 4 x 

 

 z 
2n +2 

n   z 
4−2 n  

bn sh   2   4 

        
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 + 

3 3 

1 1 1 1 

4 4 4 4 4 

 w 

 w 
1 

Where, n=0 for the first theory and n=1 for the second theory. 
 

The strain – displacement relationship for these theories as- 

u 2 w z 3  2w z 5 2 w 

ε = 0 − z bn − sh − 2 (4) 
xx x x2 3h2 x2 5h4 x 2 

 

ε (2n + 2) 
z 

2n+1 

w
 

 
 

− (−1)n (4 − 2n) z 
3−2n 

w (5) 
 

zz 
= h2n+2 2 

 z2  w  

 

 

2 n+2 

h4−2n 4 

z4  w n   z 4−2n  w 

ε xz = 1− 
 

  sh 
  

 z    −  2 + (−1) 1− 
4    4 (6) 

 

 h2  x  h  h 

The strain fields are rewritten as- 

 x   h   x 

 

ε 
xx 

 
ε 

zz 

= ε 0   
+  zε 1  

+  z 3ε 3   
+  z 5 ε 5 

(7) 

 
=  z 2 n +1ε 1  +  z 3 − 2 n ε 3 (8) 

 

ε 
xz 

= ε 0  + z 2ε 1  + z 2 n + 2ε 2  + z 4ε 3  + z 4−2 nε 4 (9) 
 

Where, 
 

ε 0 = u0 
 

 
1  x 

2 

ε 1 = − bn 
1 

 

ε 3 = − 

5 = − 

x 2 
1 

3h 2 
1 

5h 4 

 

2 

sh 

 x 2 
 2 w 

 x 2 
ε 2 

1 
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 

 

 

3 

 1  n 

 

ε 1 = (2 n + 2 )
  1 

w 
3 h 2 n + 2 2 

ε  3   = − (− 1)
n  

(4 − 2 n ) 
    1  

w 
3 
0  wsh h 4 − 2 n 4 

n  w4 
 

ε 4 = x + (− 1) x 

ε 
1 

= − 
1
  wsh (10) 

4 h 2 x 

ε 2 =  1  
2 n + 2  w2  

 

4  h   x 
 

ε = − 
1 

 w 
 

4 h 4  x 4 − 2 n   w
 

4 = − (− 1) 
4  h    x4 

   

The stress – strain relationship for the kth layer is given as- 

 

 
ζ k Q Q 0   k  ε k 


ζ 

xx  


 11 13 Q 0     ε xx 


 

zz = 

Q13 33 

Q 
 ε 

zz   (11) 

ζ 0 0 

 xz   44   xz  
 

Where:- 

 

Q11 , Q13 , Q33 and Q44 

elasticity matrix. 

 

 
are the reduced material constants from the three dimensional orthotropic 

 

By the use of Hamilton‘s principle, the equation of motion is given as- 
 

t 

 δ (T 
0 

− U )d t = 0 (12) 

 

Where, T is the kinetic energy and it is given as- 

1 

T =  
2 v 

ρ (u 2 + w 2 )dV (13) 

Where,  u  and   w  being time derivatives of  u  and  w , and ρ is the density of the material. 

 
 

U is the potential energy which is given as- 

2 

ε 

 
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w 

w  z  w   

U = 
1 

(ζ ε + ζ  ε + ζ  ε )dV (14) 

2 v 
xx    xx zz     zz xz     xz 

Substituting equation (13) and equation (14) into equation (12) – 

  u 2 z3 2w z5 2w  

(ζ δε + ζ δε + ζ δε ) − ρ 
 0 − z bn − sh − 2 

 

 
xx xx zz zz xz xz 

 t xt 3h2 xt 5h4 xt  
 δ u 2δ w z3   2δ w z5   2δ w    


 0 − z bn − 2 

sh − 4 
2 

 − 
 


t  

 
   t xt 3h xt 5h xt   v 

 w w  z 2n+2 w n   z 4−2n  w  
 dVdt (15) 

  bn   sh 

  2 + (−1) 1−     4 
 

0 ρ  
  t 

+ 

 

+   h 
 

t 
 

  δ w δ 
t  h  

 
2 n+ 2 

t    δ w n  z  4−2n  δ
 

 
  bn + sh + 

  2 + (−1) 1−  h   4   
 

 t t  h  t     t  
   

Integrating the equation (15) by parts, and collecting the coefficients δ wbn , δ wsh , δ w2 

the equation of motion in terms of stress resultant are given as- 

 

and δ w4 , 

 

 

 

N   2u  3w I  3 w I 3 w  

−  I0
 0 − I bn   − 3 sh   − 5 2 

 = 0 (16a) 

x  t 2 
1 

xt 2 3h 2 xt 2 5h 4 xt 2  

 
 2 M  3u  4w I  4w I 4 w  

x2 +  −I1
 0    + I bn   + 4 sh    + 6 2 


 

 xt 2 2 x2t 2 3h2 x2t 2 5h4 x2t 2  (16b) 
 2w  2 w I 2w  − (− n  I   2 w 

− I bn − I sh −   2n+ 2 2 1) I0 −   4−2 n 4 = 0 

t 2 
0 

t 2 h2 n + 2 t 2 
 h4−2 n  t 2 

 

 

1   2L 
+ 

 Q 
− 

1 Q  
+ 

 −I 3u 
+ 

I 4w 
+ 

I 4w 
+ 

I 4w  

3h2  x2   x
1 

h2   x
2  

  3h23   

xt
02 4

3h2  x2
b

t
n2 

9h
64   

x2t
sh2 

15h
8 6   

x2t
22   

 2w 2w I 2w n  I  2w  (16c) 

− I0
 bn + I0

 sh +   2n+2 2 + (−1) I0 −
 4−2 n 4 

 = 0 

 t 2 t 2 h2n+2 t 2 
 h4−2n  t 2  

 

0 
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11 

11 

1   2P 
− 

2n + 2 
+ 

 1 Q 
− 

1 Q  
+ 

 −I 
3
u 

+ 
I 

4
w 

+ 
I 4w 

+ 
I 4w  

3h2 x2 h2n+2 V1  h2n+2      
3 

h4 
 

 

4 
 

 5 0 6 bn 8 sh 10 4 x2 6 x2 8 2   
2    

 
 

2  2 x 2 x   5h6 xt2 5h 
2w 

t 2 15h t 2 25h   x t2  
I  w I  w I  w n  I I  

− 
  2n+2 bn + 2n+2 sh +   4n+4 2 + (−1) 2n+2   − 6 4 

 = 0 

 h
2n+2 t2 h2n+2 t2 h4n+4 t2  h

2n+2 h6  t 2 

 

 

 

(16d) 
 

 
4 − 2n  Q 1 Q   I  

2w 
+ − 

V   1 

5 

− 

 I0 
−

 
 

 

− 
4−2 n bn 

 
 

 

h4− 2n 
2  


2x h4−2 n x   

2    h
4−2 n 


 t 2 2

  I I  w  I I   w − (− n  2I I   w 
 0 −   4−2 n 


 sh − 


 2n+ 2  − 6 


 2 1) I0 − 4− 2n +   8− 4n 4 = 0 

 

 h4−2 n 
 t2 

 h2n+ 2 h6 
 t2 

 h4−2 n h8− 4 n 
 t 2 

 

(16e) 
 

The laminate stiffness constants are given as- 

( A  , A   , A  , A   ) = NL   zi +1 Qi  (1, z, z3 , z 5 )dz 

11 12 13 14  11 

i =1 zi 

( A  , A   ) = NL   zi +1 Qi    

( z 2 n +1 , z 3− 2 n  ) dz 

15 16  13 

i =1  zi 

( B   , B   , B   ) = NL   zi +1 Qi  (z 2 , z 4 , z 6 )dz 

11 12 13  11 

i =1 zi 

(B  , B   ) = NL   zi +1 Qi    

( z 2 n + 2 , z 4 − 2 n  ) dz 

14 15  13 

i =1 zi 

 

(C11 ) = 

 

NL 

 
i =1 

zi +1 

 
zi 

Q i  ( z 8 ) dz 

 

NL zi +1 

C12 , C13 ) =   
i =1  zi 

Q1i3 (z 2 n + 2 , z 6 − 2 n ) dz 

 

( D11 ) = 

 

NL 

 
i =1 

zi +1 

 
zi 

Q i ( z10 )dz 

( D  , D   ) = NL   zi +1 Qi    

( z 2 n + 6 , z8 − 2 n  )dz 

12 13  13 

i =1 zi 

( 
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44 

44 

( ) 

NL zi +1 

F11 ) =   
i =1  zi 

Q3i 3  (z 6 − 4 n  ) dz 

( E , E ) = NL zi +1 Qi    

( z 4 n + 2 , z 4 ) dz 

11 12  33 

i =1 zi 

(G  , G   , G   , G   , G   ) = NL   zi +1 Qi   (1, z, z 2n+2 , z 4 , z4−2n )dz 

11 12 13 14 15  44 

i=1 zi 

( H , H , H ) = NL zi +1 Q i   

( z 2 n + 4 , z 6 , z 6 − 2 n )dz 

11 12 13  44 

i =1  zi 

 

(T1 1 ) = 

 

NL 

 
i =1 

zi +1 

 
zi 

Q i    ( z 8 − 4 n )dz  

( R , R ) = NL zi +1 Qi    

( z 4 n + 4 , z 2 n + 6 ) dz 

11 12  44 

i =1  zi 

 

(S11 , S12  ) = 

 

NL 

 
i =1 

zi +1 

 
zi 

Q i    (z 8 , z 8− 2 n )dz 

 

NL is the number of layers. The stress resultant defined as – 
 

NL zi +1 

( N , M , L, P ) =   ζ xx 1, z, z 3 , z 5 dz 
i =1  zi 

 

(V1 ,V2 ) = 

 

NL 

 
i =1 

zi +1 

 ζ zz 
zi 

( z 2 n +1 , z 3− 2 n ) dz 

(Q , Q  , Q  , Q  , Q  ) = NL   zi +1ζ (1, z, z3 , z5 , z 7 )dz 

1 2 3 4 5   xz 

i =1 zi 

 

The mass moment of inertia given as- 

( I0 , I1 , I3 , I4 , I5 , I6 , I2 n+2 , I4−2n , I8 , I10 , I4n+ 4 , I8−4 n ) = 
NL zi +1 

  ρ (1, z, z2 , z3, z4 , z5, z6 , z2n+2 , z4n−2, z8, z10, z4n+4, z8−4n )dz 
i=1 zi

 

 

(17) 

( 



42  

16 0 

w 
B ( 1) 

I  

 3 4 
 w  

x   4 h h2  2 

 2 

1 
     2n+2 6       4 0

 

    

The equation of motion are expressed in terms of the displacement as follows- 

2u 3w A 3w A 3w 2n + 2 w 
A 0 − A   bn −   13 sh −   14 2 + A 2  

 
 11 x2  

4 −
12 x3 3h2 x3 2 5h4     x3

3 
h2n+ 2 3 

15   
x 3 (18a) 

− −   n 

 2n  w   u  w I  w I  w  

( 1) A 4 −  I
 

 

20  − I1 
b2n   − 32 

 
  

s2h − 54 
22  = 0 

h4−2n  x  t xt 3h xt 5h   xt  

3u 
−

 4w B 4w B 4w 2n + 2  2 n  4 − 2n  2w 

A
12 x3

0

 B
11 x4bn − 3h

122 
x4sh − 5h

134 
x4

2 + h2n +2 
  2 − − 

14    2 x
 

 
 

 h
4−2n  

B
15 x2

4

 

2w 2  I  
2w − (− n  I  2w 3u 4w I 3w I 4w 

− I bn − I w sh −    2n+2 2 ) − 
 

− I 0    + I bn   + +    6 2     = 0 
0  t 2 0 t 2  h

2n+2 t2 1  I0 h4−2n  t2 4 

  

1 xt2 2 x2t 2 3h42  xts2h 5h4 x2t 2 

(18b) 
 

A 3u 
− 

B 4w 
− 

B 4w 
− 

C 4w 
+ 

 G − 
2G 

− 
G    

2w 
+

 
     13 0 12 bn 13 sh 11 2  11   12 14 sh  

3h2 x3 3h2   x4 9h4 x4 15h6 2x4 

 h3 

2 h4 
   x2 

 2n + 2 
+ 

G 
− 

G 
− 

H 
+ 

H   w I  u 
+ 

I 4w 
+ 

I 4w 
+ 

I 4w  
 C

12   13 14    11 12 2       3 0 4 bn 6 sh     8 2  

 3h2n+2 h2n+2 h4 h2n+4 h6    x2 
+ 


 − 

3h2 xt 2 3h2 x2t 2 9h4 x2t 2 15h6 x2t2 
 

− 
 2w 

+ 
2w 

+ 
 I  2w   + (−  )n   

−
  I  2w   

=
 

 I0   bn  
t2 0 sh 2n+2 2  2n+2 

 
 

2 t 2 1  I0 4−2n 
4

 
h4−2 n 

  0 
 t  h  t2    

(18c) 

 

 

 
A 3u B 4w C 4w D 4w 2n + 2 u 2n + 2 2w 

     14 0 −   13 bn − 11 sh − 11 2 − A 0 + B bn + 5h4 x3 5h2
G x4 G 15h6

H x4 25h8 x4 h2 n+2 15 
x h2 n+ 2 14    x2 

 2n + 2 + 
 

 

− − 
+ 

H  
2
w 

+ 
 4n + 4 

+ 
R 

− 
2R 

+ 
S  2w 

C 2n+4 2n1+32 
 

 

14 4 2n1+14 
 

 

12 6 x2sh   D 
 

 

4 n1+14 2 n1+26 
 

 

11 2  
 3h h h h h  25h2n+6 12 h h h8 

 x2
 

+(−1)n   4 − 2n 
D

   G  H 
13  − 12 

G 

− 14 

S   w 

+ 12 4 − 
2n + 2 

E11w2  + (−1)n   (2n + 2)(4 − 2n) E12 w4
 

5h8−2n h2n+2 h6 

I  u I  w I h4
4 h 

8−2 n  
I  2 2 n+ 2 6 

 w   I  w I  w  I   w  

+ −   5 0    +   6 bn   + 8 sh   + 10 2 −  2n+2 bn +   2n+ 2 0 +    4n+4 2 

 5h6 xt2 5h4 x2t2 15h6 x2t2 25h8 x2t 2   h
2 n+2 t2 h2n+2 

t2 
 h

4n+4  t 2  

+(−  )n   I 
− 

I    2w   
=

 

 h
2n+2 h6 

 t2 

(18d) 

12 

13 + 

 
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h 5h h h h6 

 h8−2 n  


 2      

4 − 2n u 
− 

4 − 2n 2w  4 − 2n C G G H  2w 

h4−2n 
A16 x

0
 h4−2n 

B15 2bn + − 
− 2    

123   + G11  − 1
2
2  − 

 
 

4−125n − 13   2sh + 2
 

 4 − 2n D G G xH Sh4  2


n 3wh  n 
h
 

h G15 h
6−2 n  nx 1  T   w 

− 13 + 13  −   14 − 12 + 12 2 + (−1) G11 −    − (−1) 
 G15 −

 11  


 4  

4−2n 4 2n+ 2 4  (2n + 2)(4 − 2n) (4 − 2n) x2 h4−2n h4−2 n h4−2 n x2 

 I  
2w  I  

2w 
+ E12w2 − (−1) n   F w − I − 4−2n   sh − I − 4−2n   bn − 

h6 

 h4−2n 


 11   4  0 h4−2 n  t

2 

 0 h4−2 n  t2 

 I 
− 

I    2w   − (−  )n  
− 

2I 
− 

I  2w   
=

 
 


 2n+2 6 

 2
2 1  I0   4−2n 8−4n 


 4 0 

 h
2n+ 2 h6 

 x 
 h4−2 n h8−4n 

 x2 

(18e) 
 

 

 

 

 

Analytical solution of the equation of motion [55] 

 

 
Closed form solution for the above equations can be obtained for a simply supported beam by 

assuming – 

u0 =  A (t )cos px, ( wbn , wsh , w2 , w4 ) 

= (B (t ), C (t ), D (t ), E (t ))sin px (19) 

Where, p = 
nπ

 
a 

After substitution equation (19) into equation (18) , the following sets of equations is obtained- 

K X  + M X = 0 (20) 

Now the elements of the stiffness matrix [K] are given as- 

K = − p2 A , K = p3 A , K = p3 A13 , K = p3 A14 − 
p 

2n + 2 
A 

11 11 12 12 13 
3h2 14 

5h4 h2n+ 2 15 

K = (−1)
n   4 − 2n  

A ,   K = − p4 B , K = − p4   B12 , K = − p4 B13 
− p2 

 
 

2n + 2 
A

 

15 
 h

4−2n 
 

16 22 11 23 3h2 24 
5h4 h2n+ 2 14 

K = (−1)
n   

p2 
 4 − 2n  

B   ,   K = − p 4 B13 p 
 
G − 

2G12 − 
G14  

, 

25 
 h

4−2n 
 

15 33 9h4 − 2  11 
h2 h4  
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34 6  3h2n +2 12 2n +2  4  2 n+4  6    

h h h  h 

  

        12  15 13 

K = − p4 C11 

15h − p2  2n + 2 
C + 

G13     − 
G14 − 

H11  + 
H12  

, 
   

  

K = − (−1)
n   

p2 

− 

4 − 2n C13   + G   − 
G   

−  
G 

−  
H  

35 
 h4−2n  3h2 11 

h2 h4−2 n 
h6−2n 


 

K = − p4  D11  
− p2  4n + 4 

D + 
R11     

− 
2R12 + 

S11  
− 

2n + 2 
E ,

 

44 25h8 
5h2n+6 12 h4 n+4 h2n +6 

h8 
 h2 n+ 2 11 

K = − p2 (−1)
n   4 − 2n 

D +  
G13     − 

H12  − 
G14  +   

S12     
 

 

n (2n + 2)(4 − 2n ) 

45 5h8−2n 13 

 n  G 

h2n+2 

 
 

   
h6 h4 

 
n 1  

    + (−1) 
h8−2n  

T  

E , 
h6 12 

 (4 − 2n) 
2

 

K55  = − p2 (−1)  G
11  −  15     

− (−1)  h4−2 n   G15  −  11      
− (−1) n   

h4−2 n   F11 
. 

  
h4−2 n 

  
h4−2 n 

  
 

 

And the mass matrix written as- 
 

 

 

 

 
 

−I pI p 
I32 p 

I5 0 

 

 
   0 1 3h 5h4   

pI −(−I + p2I ) −
 
I + p2 I  −

 I 
+ I    −(−1)

n  
I  − 

I  

 

4 2n+2  p2 6 

 
 

4−2n  
 

1 0 2  0 
3h2   h2n+2 5h4   0 

h4−2n    I3  
    n   

M  = 
p 

2 − I + p2   I4  − I + p2   I6  −
 I2n+2 + p2 I8  −(−1) I − 

I4−2n   
3h  0 

3h2   0 
9h4   h2n+2 15h6   0 h4−2n   

       n  I 
2 

  
 I  I2n+2 2  I6   I2n+2 2 I8    I4n+4 2  I8 I10     −(−1) 2n+2 − p I10      
 p 5

4 
−

   2n+2 
+ p

   4  
−

   2n+2 
+ p

   6    − p   6 8     2n+2   8   

   
5h  h 5h   h 15h  h4n+4 15h 25h   h 25h  


 

0 −(−1)
n  

I  − 
I4−2n   −(−1)

n  
I  − 

I  −(−1) − p2   I 
 −(−1) I  − 

2I I 
 

n  I2n+2 n  
4−2n − 8−4n 

    
4−2n 10 

8 
  0 h4−2n   0 

h4−2n   h2n+2 25h  0 
h4−2n h8−4n           

 
And the displacement vector are expressed as- 

X  = A B C D E  

X  = A  B    C    D    E 

 

, 
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d 

0 

w2 

It is assumed that to find the solution of equation (20) 

A B C D E = A0 B0 C0 D0 E  eiωnt 

 

Where, A0 B0 C0 D0 E0 are the constants, and ωn is the natural frequency. 

 
By substituting the values for A, B, C, D and E into equation (20) the natural frequencies and the 

corresponding mode shapes can be obtained [54]. 

 

 
Finite element formulation[54] 

 

 
For the present analysis we assumed, each element having two nodes and each node having eight 

degrees of freedom. Linear polynomials are used for the nodal variables u0 

cubic polynomials are used for the other nodal variables of the elements. 

 

 
 

The displacements fields given are rewritten in the matrix form as- 

Ud  = Zd d 

U   = u  w
T

 

and w4 and hermite 

 

 

 

 

 
 

(21) 

 
(22) 

 

 z3 z5  

Zd  = 
1 0 

 

z 0 − 
3h

2 0 
2n+2  z  

− 
5h4 
0 (−1)

n

 

0 

1− 

 z  4−2n  

 

(23) 


0 1 0 1 0 

 
    

 

d = 

u0  wbn     



w
xbn

 

 

wsh   
w
xsh 

 h  

 
w 
x 

 
w4   


 


  h  

 
 

 

(24) 

  

The strain field associated with equation (21) is given as- 

ε  = Zid κ  (25) 

2 
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ε  

1 1 1 1 3 3 4 4 4 4 4 

  v 
      

  id 

 

 

 

NL 

ε  = ε xx ε zz xz (26) 

 

 
 

Z  = 
1 z z5 z5 
0 0 0 0 

 
(27) 

id   


0 0 0 0 0 0 1 z2 z2n+2 z4 z4−2n  

 
 

κ  = ε 0   ε 1  ε 3   ε 5   ε 1  ε 3  ε 0   ε 1   ε 2   ε 3  ε 4 
T (28)

 

From equation (18) we get- 
 

T 

δUd   = δε ζ  dV 
x h 

= b 
0 −h 

δκ 
T  

Z 
T  

ζ dzdA 

x 
T  h 

T  (29) 

= bδκ     Z id   ζ dz dx 
0  −h  

x 

=b  δκ 
T  

S 
0 

d dx 

 

Where the stress resultant Sd  given as- Sd  = N M L V1 V2 QL Q2 Q3 Q4 Q6 
 

h 

Sd  =   Zid  
T  

ζ dz 
−h = 

zi+1 

Z   
T  

QZ   κ dz (30) 

i=1  zi 

= D0 κ  

 
id id 

 

Where, 
NL zi+1 D = Z   

T  

QZ   dz 

 0  z 

i =1 i 

 
id id 

 

Now substituting equation (30) into equation (29)- 
 

x δU δκ 
T  

D  S dx 
d = b 0 d 

0 (31) 

 

T 

0 0 0 0 0 0 0 

z2n+1 z3 − 2n 0 0 0 0 0 
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 Z 

  

0 

From equation (13)- 
 

t t 

  δ TdVdt =   ρ (uδ u + w δ w )dVdt 
0 v 0 v 

t
 

= − ρ 
δ U 

T  U   dVdt 

  d d 

0t  v 

= − ρ 
T 

 δ d 
T  

Z 
id id d dVdt  

(32) 
0 vt x 

= − T 
 zi +1 

T 
  

ρ b   δ d  
  Z id  Z id dz 

d dxdt 

t x0 0  zi  

= −b 
0 0 

δ d 
T  

I 
 

moi d  dxdt 

 

Here the mass moment of inertia matrix – 
I  = ρ z 

i +1 Z  Z  d z 
T 

m o i  id id 

z i (33) 

 

 

 
Now substituting equations (31) and (32) into Hamilton‘s principle, the expression for the 

equation of motion is given as- 

t x t x 

ρ  δ d
T  

I 
 
 

moi ddxdt + b  δκ
T  

D  κdxdt = 0 

0 0 0 0 (34) 
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  

0 0 

 

1 2  

 

Derivation of stiffness and consistent mass matrices [55] 
 

The displacement vector within an element can be expressed in terms of the nodal degree of 

freedom as- 

d = N δ  
(35) 

 

Where, 

 

 

1 0 0 0 0 

0 1 0 0 0


 

  
0 x 0 

  
0 0 1 0 0 

 =  
0 0  

0
 

  

0 0 

0 0 

  
  
0 1 

 

 

 

And the shape function are taken as- 

 

 

N1 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0  

 
1 2 


 

 0 
N  =  0 

 

N1 
0 

N2 
0 

0 
N1 

0 
N2 

0 
0 

0 
0 

0 
0 

0 
0 

N3 
0 

N4 
0 

0 
N3 

0 
N4 

0 
0 

0 
0 

0 
0  

 

 0 0 0 0 0 N1 N2 0 0 0 0 0 0 N3 N4 0  

0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 N1  

 

 x 0 

0 0 1 

0 0  

x 

0 0 0 

 



49  

bn 

 

 

0 

 

And the nodal degree of freedom given by- 
 

 

δ  = 

u w  w   wsh  .........w  w2   

w 
 

2
 

 01 bn2  t 

3 

sh2   

 t 


5 

214    t 

15 16 


 

The strain curvature vector within an element is given as- 

 

 

κ = Bδ  
 

Where, 

 1 0 0  
 

 2  
 0    0  
  x 2 
 1  
 0 0 
 
 

−     
3 h 2  x 2 

 

1  2 

 

 0 0 0 − 4 2 
0 

 

 5 h  x  

 
 0 0 0 

2 n + 2  

h 2 n + 2 
0  

 

  

 0 0 0 0 (− 1 )
n + 1  

(4  −  2 n )  
 B  =  

h 4 − 2 n 
  N  
 

  n      

 

 0 0 
 x 

0 (− 1 ) 
 x 

 
 

 0 0 −   1  
2 

 
0 0  

h  x 
  
 

0 
1  

0 
 

 h 2 n + 2     x  

 − 
  1    

 h 4  x 
 

(− 1 
0 

)
n + 1      


 

 
 

(36) 
 

0 0     

 h 4 − 2 n  x  

w 

2  

0 0 

0 0 

 

0 
 

0 

 

0 0 

0 0 

0 0 
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δ δ 0 

 

Equations of motion [54] 

 

 

To derive equation of motion using Hamilton‘s principle, equation (36) and (35) are substituted 

into equation (34)- 


t  x

 (   T  N T 
I 

 

 
 

moi 
T  N δ )dxdt + b

t


x

(δ δ  TB  TD  Bδ δ )dxdt = 0 

0 0 0 0 (37) 

 
And also we can write:- 

M 
el  δ

el   

+ K 
el  δ 

e l   

= 0 

Where the element mass matrix and stiffness matrix are given as- 

el 
NL 

T T 

M  = b     N    I moi  
i =1 

el 
NL 

T 

K  =  b  B  D0 B  dx 
i =1 

 N dx 

Non dimensional natural frequency = ω = ω a2 ρ / (4E h2 )
1/ 2 

. 

n  1  
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COMPUTER PROGRAM FOR THE LAMINATED COMPOSITE BEAM 

 

Boundary Condition 

The material properties are assigned to the beam and boundary conditions are defined. The beam‘s all degrees of freedom on 

surface are taken. They are denoted with the blue flag. This condition prevents the movement of the surface in a space 

Material Specimen Dimension 

1. Steel Alloy SM-1 (0.6m X 0.030m X 0.008m) 

I. Modulus of Elasticity, E = 210 GPa SM-2 (0.6m X 0.030m X 0.004m) 

II. Density, ρ = 8030 Kg/m3 SM-3 (0.42m X 0.030m X 0.008m) 

III. Poisson‘s Ratio, ν = 0.30 SM-4 (0.42m X 0.030m X 0.004m) 

2. Carbon Fiber Reinforced Plastic SM-5 (0.6m X 0.030m X 0.008m) 

I. Modulus of Elasticity, E = 220 GPa SM-6 (0.6m X 0.030m X 0.004m) 
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II. Density, ρ = 1720 Kg/m3 SM-7 (0.42m X 0.030m X 0.008m) 

III. Poisson‘s Ratio, ν = 0.33 SM-8 (0.42m X 0.030m X 0.004m) 

 

Material Specimen Dimension 

1. Steel Alloy SM-9 (0.6m X 0.030m X 0.016m) 

I. Modulus of Elasticity, E = 210 GPa SM-10 (0.6m X 0.030m X 0.016m) 

II. Density, ρ = 8030 Kg/m3 SM-11 (0.42m X 0.030m X 0.024m) 

III. Poisson‘s Ratio, ν = 0.30 SM-12 (0.42m X 0.030m X 0.024m) 

2. Carbon Fiber Reinforced Plastic SM-13 (0.6m X 0.030m X 0.032m) 

I. Modulus of Elasticity, E = 220 GPa SM-14 (0.6m X 0.030m X 0.032m) 

II. Density, ρ = 1720 Kg/m3 SM-15 (0.6m X 0.030m X 0.032m) 

III. Poisson‘s Ratio, ν = 0.33 SM-16 (0.6m X 0.030m X 0.032m) 

 

Meshing 

By using the spatial element, ANSYS automatically generates the mesh on the beam. 10 nodes 

that each have three degrees of freedom define the element. It is appropriate for modelling the 
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finite element irregular mesh since it exhibits quadratic shifting behaviour. 
 

 
3. Post processing: 

This menu is helpful to find the output of the problems. Such as – 

1. Result summery 

2. Failure criteria 

3. Plot results 

4. List results 

5. Result summery 

6. Nodal calculation. 

We found the output natural frequencies and mode shapes after the application of thismenu which is 

shown in chapter 5, result and discussion. 
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RESULT AND DISCUSSION 

 
MODELLING ANALYSIS 

 

ANSYS, Inc. is an engineering modelling and simulation software that offers engineering 

simulation solution sets in engineering simulation that a design process requires.[1] Here, we are 

using ANSYS WORKBENCH 14.0 in which modelling of beam is done in geometry component 

system, material is selected from engineering data library and simulation & analysis is performed 

in modal analysis system from where we obtained natural frequency and mode shapes for all 

specimens of both materials 

 
Steel Alloy & Carbon Fiber Carbon Fiber & Steel alloy 
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Steel Alloy ,Carbon Fiber & Steel Alloy Carbon Fiber Steel Alloy Carbon Fiber 
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Carbob fiber, steel alloy , steel 
alloy, Carbon fiber 

Carbon Fiber, Steel   Alloy, 
carbon fiber , Steel alloy 

Carbon fiber , carbon fiber, 
steel alloy, steel alloy 
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BEAM DEFINED : 
A= STEEL ALLOY + CARBON FIBER REINFORCED PLASTIC 

A’= CARBON FIBER REINFORCED PLASTIC + STEEL ALLOY 

B= STEEL ALLOY + CARBON FIBER REINFORCED PLASTIC + STEEL ALLOY 

B’ = CARBON FIBER REINFORCED PLASTIC + STEEL ALLOY + CARBON FIBER REINFORCED 

PLASTIC 

C = CARBON FIBER REINFORCED PLASTIC + STEEL ALLOY + STEEL ALLOY + CARBON FIBER 

REINFORCED PLASTIC 

C’ = CARBON FIBER REINFORCED PLASTIC + STEEL ALLOY + STEEL ALLOY + CARBON FIBER 

REINFORCED PLASTIC 

C” = CARBON FIBER REINFORCED PLASTIC + CARBON FIBER REINFORCED PLASTIC + STEEL 

ALLOY + STEEL ALLOY 
 

Graph between A&A‘ 
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Mode Shape  
 

Graph between B&B‘ 

 

 

Graph between C,C‘&C‖ 
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S.No Mode Shape S+C 

(A) 

C+S 

(A’) 

S+C+S 

(B) 

C+S+C 

(B’) 

C+S+S+C 

(C) 

C+S+C+S (C’) C+C+S+S (C”) 

1. 12 3.912 3.912 3.922 5.3049 5.0079 4.812 4.9292 

2 25 12.407 12.407 12.504 16.307 15.238 14.400 14.889 

3 36 20.525 20.525 20.904 27.040 24.607 23.999 24.463 

4 47 29.575 29.575 29.151 37.718 35.008 33.592 33.299 

5 57 37.795 37.795 37.083 48.052 44.846 43.125 42.089 

6 65 44.488 44.488 43.191 56.418 51.829 49.533 48.147 

        



 

           

         Chapter 6 

  CONCLUSION AND SCOPE FOR THE FUTURE WORK 
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CONCLUSION 

 

 
(1) The model of the cantilever beam was modeled in the programs ANSYS . 

(2) Equal mesh was used 10 mm for all the beams ,  

(3) it was automatically generated regular mesh  

(4) The modal analysis of the Laminated cantilever beam was executed for six mode shapes and their 

natural frequencies were computed. 

(5)  Mode shapes of the steel alloy and carbon fiber reinforced plasitic cantilever beam A & A’  are 

identical for both programs.  

(6) Mode shapes of the steel alloy ,carbon fiber reinforced plasitic & Steel alloy  cantilever beam B 

& B’ are not identical. B’ is higher frequency than B beam so B beam is more sutiable 

(7) Mode shapes of the steel alloy ,carbon fiber reinforced plasitic & Steel alloy  cantilever beam 

C,C’,C” are not identical. C has higher frequency than C’ & C” beam, 

(8) In case of C’ & C”  for first few mode C’ has less frequencies but as Mode is increases Frequency 

is also increases compared to C” so C’ is sutiable for low mode and C” is suitable for higher 

mode. 

. 
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Scope for the future work:- 

 

 
1. An analytical formulation can be derived for modelling the behaviour of laminated 

composite beams with integrated piezoelectric sensor and actuator. Analytical solution 

for active vibration control and suppression of smart laminated composite beams can be 

found. The governing equation should be based on the first-order shear deformation 

theory (Mindlin plate theory), 

2. The dynamic response of an unsymmetrical orthotropic laminated composite beam, 

subjected to moving loads, can be derived. The study should be including the effects of 

transverse shear deformation, rotary and higher-order inertia. And also we can provide 

more number of degree of freedom about 10 to 20 and then should be analyzed by higher 

order shear deformation theory. 

3. The free vibration characteristics of laminated composite cylindrical and spherical shells 

can be analyzed by the first-order shear deformation theory and a meshless global 

collocation method based on thin plate spline radial basis function. 

4. An algorithm based on the finite element method (FEM) can be developed to study the 

dynamic response of composite laminated beams subjected to the moving oscillator. The 

first order shear deformation theory (FSDT) should be assumed for the beam model. 

5. The damping behavior of laminated sandwich composite beam inserted with a visco - 

elastic layer can be derived. 
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