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INTRODUCTION 

 

The Central Dogma of Molecular Biology outlines the flow of information that is stored in 

genes as DNA, transcribed into RNA, and finally translated into proteins (Crick, 1958; 

Crick, 1970). Early gene expression studies relied on low-throughput methods such as 

Northern blots and quantitative polymerase chain reaction (qPCR), but these were limited 

to single transcript measurements.  

The development of next-generation high-throughput sequencing (NGS) has revolutionized 

transcriptomics by enabling RNA analysis with complementary DNA (cDNA) sequencing 

(Wang et al., 2009). This method, called RNA-Sequencing, has clear advantages over 

previous approaches and has revolutionized the understanding of the complex and dynamic 

nature of the transcriptome. RNA-Sequencing provides a more detailed and quantitative 

view of gene expression, alternative splicing, and allele-specific expression. Recent 

advances in RNA-Sequencing workflows, from sample preparation to sequencing 

platforms to bioinformatics data analysis, have enabled detailed transcriptome profiling and 

the ability to elucidate a variety of physiological and pathological conditions. rice field. 

The advent of high-throughput next-generation sequencing (NGS) technology has 

revolutionized transcriptomics. This technological development solves many of the 

challenges posed by the hybridization-based microarray and Sanger sequencing-based 

approaches previously used to measure gene expression. 

 High-throughput sequence (HTS) data analysis is a complex multi-step process. Many 

bioinformatics tools are available at most steps, and most tools require different parameters 

to be set. Due to this complexity, HTS data analysis is particularly prone to reproducibility 

and consistency issues. The high-throughput sequencer enables transcriptome inspection. 

The transcriptome is a set of intracellular ribonucleic acids, including messenger 

ribonucleic acid (mRNA), transfer ribonucleic acid (tRNA), ribosomal ribonucleic acid 

(rRNA), small nucleus ribonucleic acid (snRNA), and non-coding ribonucleic acid 

(ncRNA), others. These RNAs are expressed differentially depending on the tissue, 

physiological state, or developmental stage (Gupta et al., 2021). Interpreting the complexity 

of the transcriptome is an important goal for understanding the functional elements of the 

genome, and therefore for understanding how the disease functions and signs of progress. 

In this sense, the amount of non-coding DNA has recently been shown to increase with 

biological complexity, increasing by 0.25% in the prokaryotic genome and 98.8% in the 
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human genome. Existing complexity associated with the discovery of small intrinsic 

disturbances RNA (siRNA), long-scattered non-coding RNA (lincRNA), transcription 

initiation RNA (tiRNA), microRNA (miRNA), transcription initiation site-related RNA 

(TSSa-RNA), etc. is the transcription puzzles we need. Represents a piece of. Elucidate to 

understand how the genome works.  

 Psoriasis is one of the most common immune inflammatory skin diseases, affecting 

approximately 125 million people worldwide and more than 8 million in the United States 

(Rachakonda et al., 2014). Psoriasis lesions can exhibit a variety of clinical manifestations, 

including acanthosis (increased epidermal thickness), keratin proliferation, parakeratosis, 

hypervascularization, and dense skin infiltration of immune cells (Gran et al.,2020). 

Keratinocytes have central importance for inducing early pathogenic events and for 

increasing psoriatic inflammation during the course of the disease (Albanesi et al., 2018, 

Benhadou et al., 2019). In response to external and internal threat stimuli, keratinocytes 

can be a source of innate immune mediators. These include various pro-inflammatory 

cytokines and chemokines that mobilize cells important for innate and adaptive immune 

responses (Li et al., 2014, Takagi et al., 2016). The IL-23 / IL-17 axis and TNF were first 

identified in animal studies as the centre of pathogenesis for skin inflammation such as 

psoriasis, and their role is now being demonstrated in humans. IL-36γ is also strongly 

associated with human psoriasis. IL-36γ is produced by keratinocytes and can induce the 

expression of the IL-23 gene in keratinocytes (Goldstein et al., 2020). Therefore, it is 

possible to drive a strengthening loop from IL-23 back to IL-17, IL-36γ, and IL-23, thereby 

maintaining the condition. All of these cytokines are elevated in psoriatic skin lesions, and 

proper neutralization of TNF, IL-23 p19, or IL-17A has shown potential therapeutic effects 

in psoriatic patients (Gran et al., 2020, Schon, 2019, Yamanaka et al., 2021). Although 

these current treatments have proven to be effective, some patients do not respond or 

become refractory over time, or the disease relapses when treatment is stopped. Therefore, 

understanding the pathological mechanisms that can occur in psoriasis requires further 

efforts, such as identifying new molecules that can be targeted alone or in combination with 

existing therapies.   

TNF and IL-17 are two cytokines that promote dysregulated keratinocyte activity, and their 

targeting is very effective in psoriasis patients, but whether these molecules interact with 

other inflammatory factors. Is not clear. Here, mice with a keratinocyte-specific deletion of 

Fn14 (Tnfrsf12a), a receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), have 
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imiquimod-induced skin inflammation such as decreased epidermal hyperplasia and 

decreased expression of the psoriasis signature gene. Indicates a decrease in. This 

corresponded to the expression of Fn14 in the keratinocytes of human psoriasis lesions and 

TWEAK being found in several sub-sets of skin cells. Transcriptomic studies in human 

keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in 

upregulating the expression of CXC chemokines, along with cytokines such as IL-23, 

inflammation-associated proteins like S100A8/9 and SERPINB1/B9, all previously found 

to be highly expressed in the lesional skin of psoriasis patients (Gupta et al., 2021)  

 Although these current treatments have proven efficacy, some patients fail to respond or 

become resistant to therapy over time, or their disease comes back when treatment is 

stopped. Therefore, continuing efforts to understand the pathological mechanisms that 

might occur in psoriasis are needed, including identifying novel molecules that can be 

targeted alone or combined with existing therapies. TNF-like weak inducer of apoptosis 

(TWEAK, TNFSF12) can be expressed similar to TNF (TNFSF2) is a membrane-bound 

molecule or soluble cytokine by a variety of cell types including structural and immune 

cells (Chicheportiche et al., 1997, Bird et al., 2013). TWEAK binds to Fn14 (fibroblast 

growth factor inducible 14, TNFRSF12A) and regulates many cellular activities such as 

proliferation, migration, differentiation, apoptosis, and angiogenesis (Leng et al., 2011). 

TWEAK is involved in the pathogenesis of several inflammatory and autoimmune diseases 

(Burkly, 2014, Doerner et al., 2016). Recently, we have discovered that TWEAK-deficient 

mice are protected from exhibiting severe imiquimod-induced skin inflammation with 

some characteristics of psoriasis. Gene set enrichment analysis suggests an association 

between Fn14 transcripts and their signaling mediators in human psoriasis lesions (Leng et 

al., 2011). The pathogenic activity of TWEAK was subsequently validated by another 

group using Fn14-deficient mice in the same experimental model (Doerner et al., 2015). 

Other literature has found that soluble TWEAK is upregulated in the sera of psoriasis 

patients and that expression of both TWEAK and Fn14 is detected at high levels in tissue 

sections of psoriasis-damaged skin (Sidler et al., 2017, Peng et al., 2018). A new 

therapeutic approach to reduce skin lesions in psoriasis. The TWEAK primary cell target 

in the skin is unclear. Subcutaneous injection of recombinant TWEAK bolus into mice was 

found to result in skin inflammation and some histological features reminiscent of human 

psoriasis. It was associated with the production of a series of chemokines that attract the 

innate and adaptive immune cells characteristic of psoriasis (Sidler et al., 2017). Many of 

these chemokines are products of keratinocytes, and Fn14 is expressed in keratinocytes 
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(Sidler et al., 2017), suggesting that this cell type may be central to the action of TWEAK. 

Before considering clinical treatment for this pathway, how TWEAK in the skin, especially 

on keratinocytes, and its relationship to other pathogenic molecules such as IL-17 and TNF 

that also have receptors on keratinocytes  

 In this study, we investigated if TWEAK signalling specifically in keratinocytes is required 

to develop psoriasis-like skin lesions after imiquimod treatment using Fn14-conditional 

knockout mice, and also performed RNA-sequencing analysis in human epidermal 

keratinocytes to determine how TWEAK alone or in combination with IL-17 and TNF 

controls expression of a variety of gene sets found to be upregulated in human psoriasis. 

Our data demonstrate that Fn14 signalling in keratinocytes is crucial for the development 

of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish 

substantial similarities in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, 

and notably, we found strong synergistic activities of these cytokines acting together on a 

number of genes associated with psoriasis. Correspondingly, a similar effect of blocking 

TWEAK therapeutically was observed in reducing skin lesions in mice compared to 

blocking either TNF or IL-17A, and no greater effect was seen with combination 

treatments. These results suggest that TWEAK might be as good a target to counter the 

keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as 

observed when IL-17 and TNF are neutralized (Wang et al., 2021, Bilgic et al., 2016) 

The main goal of many gene expression experiments is to detect transcripts that exhibit 

differential expression under a variety of conditions. Extensive statistical approaches have 

been developed to test differential expression using microarray data, and the continuous 

probe intensity of the entire replication can be approximated by a normal distribution 

(Chandran and Raychaudhuri, 2010, Cui and Churchill, 2003, Smyth, 2004). While these 

approaches can, in principle, be applied to RNA-Sequencing data, other statistical models 

of discrete read counts that do not fit the normal distribution should be considered. Early 

RNA-Sequencing studies showed that the distribution of read counts throughout replication 

follows a Poisson distribution. This formed the basis for modelling RNA-Sequencing count 

data (Grant et al., 2005). However, further studies have shown that biological variability is 

not captured by Poisson's assumptions and leads to high false positive rates due to 

underestimation of sampling errors (Marioni et al., 2008, Anders and Huber, 2010, 

Lanhmead et al., 2010). Therefore, a negative binomial distribution model that describes 
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overdispersion or extra-Poisson variability has been shown to best fit the distribution of 

read counts across biological replication. 
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REVIEW OF LITERATURE 

 

 Psoriasis Vulgaris is a chronic disease that affects 1–3% of the population (Rohinson and 

Oshlack, 2010). In addition to the possible involvement of skin and joints, recent evidence 

suggests a link between psoriasis and other systemic disorders (Gelfand et al., 2006). The 

molecular properties of psoriasis skin samples have led to a better understanding of the 

etiology of the disease and helped identify therapeutic targets (Lebwohi, 2003). Psoriasis 

is one of the most common chronic inflammatory skin diseases, affecting 1-3% of the adult 

population worldwide (Lebwohi, 2003). It is characterized by marked overgrowth and 

inadequate end differentiation of keratinocytes. In addition, complex interactions between 

different cell types and various cytokines are known to contribute to the development of 

psoriasis. The etiology is also based on complex interactions between genetic 

predisposition, important histocompatibility alleles, and various environmental triggers 

(Lowes et al., 2007). However, from a molecular perspective, the mechanisms responsible 

for the interaction of keratinocytes with the inflammatory cells that infiltrate the epidermis 

are not yet fully understood. Analysis of the molecular background of psoriasis describes 

many disease-related genes and proteins with aberrant expression patterns (Nomura et al., 

2003), but little is known about the regulatory pathways responsible for this aberrant 

expression. Recent evidence suggests that non-coding RNAs such as microRNAs 

(miRNAs) and long noncoding RNAs (lncRNAs) contribute to the pathogenesis of 

psoriasis by affecting protein expression and function in both keratinocytes and 

inflammatory cells. It suggests that it may be (Sonkoly et al., 2007, Zibert et al., 2010, Ahn 

et al., 2016, Gupta et al., 2016, Tsoi et al., 2015). RNA Sewing Fundamentals: RNA 

Sequencing is the use of next-generation high-throughput sequencing technology to study, 

characterize, and quantify genomic transcriptomes (Morin et al., 2008). Unlike previous 

methods, RNA sequencing uses synthetic techniques to define nucleotide sequences and 

quantify RNA molecules in a sample (Wang et al., 2009). Next-generation sequencing 

(NGS) can faithfully process this data in hours to days, making it an ideal method for RNA 

analysis among many researchers (Kolodziejczyk et al., 2015). The use of this technology 

in research and literature has exploded in popularity. With recent discoveries in the use of 

RNA sequencing in many pathologies, there are many promising potential clinical 

applications for RNA sequencing (Beane et al., 2011). Several commercially available 

RNA sequencing kits are available for each sample. Most follow similar processing steps 
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but ultimately depend on experimental considerations (Chu and Corey, 2012). Analysis of 

total RNA, mRNA, and small RNA can be performed with most kits. To isolate mRNA, 

use poly (T) primers attached to beads or magnets to bind mRNA and isolate these strands. 

For small or non-coding RNA, gel electrophoresis is used to separate these molecules. 

Complete RNA separation uses a combination of these two techniques (Tuch et al., 2010). 

Then ligate the adapter to the 5'end, 3'end, or both. When RNA is isolated, cDNA is 

generated, amplified, and fragmented. Some kits provide RNA sequencing directly without 

creating cDNA. Although rRNA makes up a significant proportion of total RNA and can 

be removed, it has little research interest. These samples are then sequenced by next-

generation massively parallel sequencing technology that utilizes sequencing by 

synthesizing short DNA strands complementary to cDNA. Once the reads are generated, 

the software can be used to analyse the sequence reads and match the reads to parts of the 

genome. You can also create a de novo transcriptome map by mapping gene fragments with 

sequencing analysis software. The total number of reads for each gene product can be used 

to quantify proportional gene expression (Han et al., 2015). 

The use of RNA-Sequencing has recently increased due to advances beyond previous 

attempts in transcriptome research. Prior to NGS RNA sequencing, two well-known 

techniques were available. Hybridization of cDNA probes connected to microarrays 

enabled transcriptome analysis but was limited by the need for extensive knowledge of 

genomes, transcripts, alternative splicing, and exons. The background noise produced by 

cross-hybridization also limited resolution during attempts to quantify gene expression. 

Another technique was Sanger sequencing, which used chain termination to determine 

nucleotide sequences. In contrast to NGS, the Sanger method was more expensive and time-

consuming and could only analyze a limited portion of the transcript (Morin et al., 2008, 

Wang et al., 2009, Burroughs et al., 2013). Discovery of both non-coding RNAs such as. 

B. miRNAs (miRNAs) have required the creation of assays to test these small non-coding 

RNAs with variant mRNAs at high throughput and high resolution, as well as the discovery 

of post-transcriptional mRNA expression regulation (Klerk and Hoen, 2015). RNA-

Sequencing techniques allow researchers to perform both of these tasks and quantify RNA 

expression, and thus gene expression, in a single assay. The high throughput of RNA 

sequences allows the transcriptome to be analyzed and efficiently compared across 

different environmental factors such as time, different tissue samples, pathological 

conditions, and pharmacological interventions. The potential for de novo transcriptome 
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synthesis allows the analysis and discovery of new products without the need for prior 

genomic and transcriptional knowledge of the sample. The resolution of RNA sequences 

also enables the identification of single nucleotide polymorphisms, novel post-

transcriptional modifications, novel alternative splicing patterns, and previously 

unidentified non-coding RNA molecules. RNA sequencing provides accurate 

quantification of mRNA expression compared to real-time PCR experiments (Scapato et 

al., 2015, de Klerk et al., 2014, Derks et al., 2015). RNA sequences can be used to study 

the molecular basis of disease susceptibility, cancer etiology/progression, and response to 

treatment. RNA sequences have been used to analyze the etiology of various malignancies 

such as psoriasis, lung cancer, and colon cancer. RNA sequencing can identify differential 

expression of genes (DEGs), mutant genes, fusion genes, and gene isoforms in pathological 

conditions. RNA sequencing also has potential for diagnostic and therapeutic applications. 

Current research on colorectal disease using RNA sequencing reveals new discoveries that 

may help clinicians in the future management of patients with colorectal disease. 

Transcriptome analysis is an important tool for characterizing and understanding the 

molecular basis of phenotypic changes in biology, including disease. In recent decades, 

microarrays have been the most important and widely used approach to such analysis, but 

recently high-throughput cDNA sequencing (RNA-sequencing) has emerged as a powerful 

alternative (Mortazavi et al., 2008). Many applications have already been found (Chen et 

al., 2011). RNA-sequencing uses next-generation sequencing (NGS) methods to sequence 

cDNA from RNA samples, producing millions of short reads. These reads are then typically 

mapped to the reference genome, and the number of reads mapped within the genomic traits 

of interest (such as genes or exons) is used as a measure of the frequency of the traits of the 

analyzed sample (Oshlack et al., 2010).  

Perhaps the most common use of transcriptome profiling is to search for differentially 

expressed (DE) genes. H. Look for genes that show differences in expression levels 

between conditions, or genes that are associated with a particular predictor or response. 

RNA-sequencing offers several advantages over microarrays for differential expression 

analysis. B. Ability to detect and quantify previously unknown transcripts and isoforms 

with increased dynamic range and reduced background levels (Agrawal et al., 2010, 

Bradford et al., 2010, Bullard et al., 2010). However, analysing RNA-sequencing data can 

be difficult. Some of these issues are unique to next-generation sequencing methods. For 
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example, differences in nucleotide composition between genomic regions mean that 

reading ranges may not be uniform throughout the genome. In addition, more reads are 

mapped to longer genes than shorter genes with the same expression level. In differential 

expression analysis, where genes are individually tested for differences in expression 

between conditions, biases within the sample are usually ignored as they are expected to 

affect all samples in a similar manner (Agrawal et al., 2010). 

RNA-sequencing experiments show other types of heterogeneity between samples. First, 

the depth of the sequence or the library size (total number of reads allocated) usually varies 

from sample to sample. That is, the counts observed between the samples cannot be 

compared directly. In fact, even in the absence of true differential expression, if one sample 

is sequenced twice as deep as another, then all genes in the first sample receive twice as 

many as the second sample. It is expected that we would like to avoid such confusion. The 

effect of true differential expression. The easiest way to approach different library sizes is 

to simply rescale or resample the read counts to get the same library size for all samples. 

However, such normalization is generally not sufficient. This is because RNA-Sequencing 

counts essentially represent the relative abundance of genes, even if the libraries are 

actually the same size. Some highly expressed genes can make up a very large proportion 

of the reads sequenced in the experiment, so few reads need to be assigned to the remaining 

genes (Bullard et al., 2010). Therefore, the presence of a small number of highly expressed 

genes suppresses the count of all other genes, and the latter group of genes are mis 

expressed compared to samples with more evenly distributed reads. It is misunderstood that 

it can appear low and can lead to many genes. More complex normalization schemes have 

been proposed to address this difficulty and allow counts to be compared between samples 

(Bullard et al., 2010, Anders and Huber, 2010, Robinson and Oshlack, 2010). In addition 

to library size, these methods also include estimating sample-specific normalization 

coefficients. It is used to rescale the observed count. Using these normalization methods, 

the sum of the normalized counts across all genes are therefore not necessarily equal 

between samples (as it would be if only the library sizes were used for normalization), but 

the goal is instead to make the normalized counts for non-differentially expressed genes 

similar between the samples. In this study, we use the TMM normalization (trimmed mean 

of M-values (Robinson and Oshlack, 2010)) and the normalization provided in the DESeq 

package (Anders and Huber, 2010). A comprehensive evaluation of seven different 

normalization methods was recently performed (Dillies et al., 2012), in which these two 
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methods were shown to perform similarly, and they were also the only ones providing 

satisfactory results with respect to all metrics used in that evaluation. Still, it is important 

to keep in mind that even these methods are based on an assumption that most genes are 

equivalently expressed in the samples, and that the differentially expressed genes are 

divided more or less equally between up- and downregulation (Dillies et al., 2012).  

 Microarrays have been used routinely for differential expression analysis for over a 

decade, and there are well-established methods available for this purpose (such as limma 

(Smyth, 2004)). These methods cannot be easily migrated to the analysis of RNA-

sequencing data (Robinson and Smyth, 2008).  

It is different from the data obtained from the microarray. Intensities recorded from 

microarrays are treated as continuous measurements and are generally assumed to follow a 

lognormal distribution, but counts from RNA-sequencing experiments are non-negative 

integers and therefore essentially follow a discrete distribution. Poisson distribution and 

negative binomial distribution (NB) are the two most commonly used models in the method 

explicitly developed for differential expression analysis of this type of count data (Anders 

and Huber, 2010, Robinson and Symth, 2008, Auer and Doerge, 2011, Hardcastle and 

Kelly, 2010, Di et al., 2011). Other distributions such as the beta-binomial distribution 

(Zhou et al., 2011) have also been proposed. The Poisson distribution has the advantage of 

simplicity, with only one parameter, but limits the variance of the modelled variables to the 

mean. The negative binomial distribution has two parameters that encode the mean and 

variance, so you can model the more general mean and variance relationship. For RNA-

sequencing, the Poisson distribution has been suggested to be suitable for the analysis of 

engineering replication, but with high variability between biological replications, it is 

accompanied by overdispersion, such as a negative binomial distribution. Distribution is 

required (Bullard et al., 2010, Marioni et al., 2008). Some software packages represent 

RNA-sequencing data in converted quantities instead of using integers directly. Long 

transcripts are expected to receive more reads than short transcripts with the same 

expression level, so the goal of such a conversion is to normalize the count in relation to 

various library sizes and transcript lengths. Is to do. Other normalization strategies can be 

used to address other biases, such as biases due to variable GC content in reads. After such 

a conversion, the resulting value will no longer be an integer count. That is, you should not 

plug in numerical-based methods for differential expression analysis. Therefore, of the 
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methods evaluated in this study, only nonparametric methods are suitable for RPKM 

values. Other software, such as Cufflinks / Cuffediff (Trapnell et al., 2010), provides an 

integrated analytical pipeline from aligned reads to derivative results by inference based on 

FPKM values.  

 The field of differential expression analysis of RNA-sequencing data is still in its infancy, 

and new methods are constantly being introduced. To date, there has been no general 

consensus on which method works best in a particular situation, and few detailed 

comparisons between the proposed methods have been published. In a recent publication 

(Kyam et al., 2012), four parametric methods were compared in terms of their ability to 

distinguish between truly differentially expressed (DE) and truly non-DE genes under 

different simulation conditions. The authors also compared duplications between sets of 

DE genes found differently in practice data set. Another recent study (Robles et al., 2012) 

evaluated the effect of increased sequence depth on the ability to detect the DE gene and 

contrasted this with the benefits of increased sample size, the latter demonstrating to be 

significantly greater. In (Nookaew et al., 2012), the authors published a case study on 

Saccharomyces cerevisiae, comparing the results of several differential expression analysis 

methods of RNA-sequencing with each other, comparing them with the results of 

microarrays, and generally between different methods. 

In this study, we investigated if TWEAK signalling specifically in keratinocytes is required 

to develop psoriasis-like skin lesions after imiquimod treatment using Fn14-conditional 

knockout mice, and also performed RNA-sequencing analysis in human epidermal 

keratinocytes to determine how TWEAK alone or in combination with IL-17 and TNF 

controls expression of a variety of gene sets found to be upregulated in human psoriasis. 

Our data demonstrates that Fn14 signalling in keratinocytes is crucial for the development 

of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish 

substantial similarities in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, 

and notably we found strong synergistic activities of these cytokines acting together on a 

number of genes associated with psoriasis. Correspondingly, a similar effect of blocking 

TWEAK therapeutically was observed in reducing skin lesions in mice compared to 

blocking either TNF or IL-17A, and no greater effect was seen with combination 

treatments. These results suggest that TWEAK might be as good a target to counter the 
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keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as 

observed when IL-17 and TNF are neutralized (Gupta et al., 2021). 
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MATERIALS AND METHODOLOGY 

Workflow is the series of activities that are necessary to complete a task. Each step in a 

workflow has a specific step before it and a specific step after it. Workflow for RNA 

Sequencing analysis is show in figure 1.  

 

 

Fig 1: Workflow for RNA-Seq Analysis 

The sample sequences were downloaded from the NCBI GEO Dataset (Gupta et al., 2021). 

10samples of paired-end sequencing were selected, out of which 6 were TWEAK 

stimulated and 4 were TNF stimulated, the metadata of the samples was downloaded on the 

workstation having an Intel Xeon 3.20GHz x20 processor and 150GB of RAM, 10 cores. 

The list of samples is shown in figure 2. 
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Fig 2: Metadata of the sample on NCBI 

Quality Control by Fast QC 

Then, the data were analyzed for quality control and trimming using Fast QC, 

which provides a simple way to do some quality control checks on raw sequence data 

coming from high throughput sequencing pipelines, and the outcome of the Fast QC 

analysis shows whether the trimming is needed or not. Comparing the results from 

standards suggests, that trimming is not needed in the data obtained, the result of Fast QC 

is also shown in the figures 3. The data was good with little noise. 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

.                          

Fig 3a: SRR14108901_1                                                           Fig 3b: SRR14108901_2 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Fig 3c: SRR14108902_1                                             Fig 3d: SRR14108902_2 

 

Fig 3e: SRR14108903_1                                             Fig 3f: SRR14108903_2 

 

Fig 3g: SRR14108904_1                                             Fig 3h: SRR14108904_2 
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Fig 3i: SRR14108905_1                                             Fig 3j: SRR14108905_2 

 

Fig 3k: SRR14108906_1                                             Fig 3l: SRR14108906_2 

 

Fig 3m: SRR14108907_1                                             Fig 3n: SRR14108907_2 



17 
 

 

Fig 3o: SRR14108908_1                                             Fig 3p: SRR14108908_2 

 

Fig 2q: SRR14108909_1                                             Fig 2r: SRR14108909_2 

 

Fig 3s: SRR14108910_1                                             Fig 3t: SRR14108910_2 

Figure 3 (Figure 3a to figure 3t) shows the quality control by using Fast QC of the following 

samples. 
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Building the reference index by RStudio 

The Human reference genome of the human was downloaded for building a reference index 

for alignment and mapping of the sequence from NCBI (National Center for Biotechnology 

Information), the reference index was built using RStudio, using the Rsubread package and 

the base name was given as “chr1_mm10”, as shown in Figure 4. Genome indexing can be 

described in a similar way to book indexing. If you want to know on which page a particular 

word appears or where a chapter begins, it's much more efficient / faster to look it up in a 

ready-made index than to look it up until you find each page in the book. The same is true 

for linear. Indexes allow aligners to narrow down potential origins of query sequences in 

the genome, saving both time and memory. 

Fig 4: Reference index was built using Rsubread in RStudio 

Alignment using Rsubread 

Then, the alignment was done using pair-end sequencing alignment, by RStudio and by 

taking two FASTA files as input, the output files are in BAM format using the reference 

index, Rsubread can be used for many processes like- Alignment, quantification, and 

analysis of RNA sequencing data (including both bulk RNA-seq and scRNA-seq) and DNA 

sequencing data (including ATAC-seq, ChIP-seq, WGS, WES, etc). Includes functionality 

for reading mapping, read counting, SNP calling, structural variant detection, and gene 

fusion discovery. Can be applied to all major sequencing technologies and to both short 
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and long sequence reads (Liao et al., 2019) The following results were obtained after 

alignment; the list of files is shown in figure 5. 

Fig 5: The list of BAM files after alignment 

Feature Count using Rsubread in terminal 

After the alignment, we got one BAM file instead of two FASTA files and then the feature 

count was done in order to get the count table, it was done by using Rsubread in the Ubuntu 

terminal and the output was in the form of the count.out file. The full analysis is shown in 

the figure 6. 

Fig 6: Feature Count using Rsubread 
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The count data are structured as a table, which reports the number of sequence fragments 

assigned to each gene for each sample, the count data were further filtered for null, NA, 

and negative values in the table, as these values show errors in further steps. The count data 

output for 10 samples were 47895, but after filtering the negative values, NULL values, 

NA values and zero values, only 7322 reading were left for further analysis of Differentially 

Expressed Genes. Feature Count is a general-purpose read summarization function, which 

assigns to the genomic features (or meta-features) the mapped reads that were generated 

from genomic DNA and RNA sequencing. 

(https://www.rdocumentation.org/packages/Rsubread/versions/1.22.2/topics/featureCount

s) 

RNA-seq reads may be aligned to the transcriptome rather than the genome. In this case, 

there can be hundreds of thousands of transcripts, and each transcript becomes a reference 

sequence. featureCounts supports thread-specific read counts when thread-specific 

information is provided (Yang et al., 2014). The output table of the first 20 output of the 

count table is shown in table 1. 

Table 1: Table of first 20 output after feature count of the sequence data 
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Differentially Expressed Genes Analysis 

Differential expression analysis means taking normalized read count data and performing 

statistical analysis to discover quantitative changes in expression levels between 

experimental groups. 

The differentially Expressed genes analysis was done in RStudio using package DESeq2, 

the following steps were followed, firstly the tables are converted to matrix, then the 

conditions are assigned to the data, the data was then loaded to DESeq pipeline and different 

types og plots and graphs were obtained according to the need of the analysis, like- 

dispersion plot, heatmap, scatter plot, histogram, MA plot, volcano plot, etc. 
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RESULT AND DISCUSSION 

Volcano Plot 

Another common and interesting comparison between the two treatment conditions is the 

adjusted P-value and log fold change. This figure 7 is called a volcano plot because it 

resembles an exploding volcano, with clusters of data points near the origin and the fanning 

effect moving away from its central location. The volcanic plot shows the statistical 

significance of the difference to the magnitude of the difference between the individual 

genes compared. Usually indicated by a fold change of negative base 10log or base 2log, 

respectively. The P-value undergoes a negative transformation, so the higher the data point 

along the y-axis, the smaller the P-value. Volcano graphs are generally considered to be 

statistically differentially expressed based on the adjusted P value of the difference between 

treatments, including some threshold indicators of the adjusted P value. Indicates the gene 

to be used. Changes in log multiples along the x-axis show a clearer difference in extrema, 

and data points close to 0 represent genes with similar or same mean expression levels. In 

the case of volcanic areas, as the name implies, it is expected to be quite widespread. The 

wide dispersal indicates two treatment groups with significant differences in gene 

expression. It is quite rare for a volcano plot to have almost or all data points gathered near 

the origin. 

 

Fig 7: Volcano Plot generated from DESeq2 Dataset 
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MA Plot 

The MA chart can only compare two treatment conditions at a time. However, all 

pairwise comparisons in this figure 8 can be combined in a matrix format to provide 

all possible combinations at once. Each cell represents a particular comparison, 

shown cell by cell or at the intersection of rows and columns. This visualization 

allows the user to view all pairwise fold change comparisons and average 

manifestations at once. In addition, this method allows direct comparison of 

pairwise treatment comparisons. It provides an approach for determining which 

treatment comparisons are more or less similar in terms of both fold change changes 

and mean expression levels. Like other matrix options, this process allows the user 

to visualize all treatment-based comparisons in one diagram. 

 

 

Fig 8: MA Plot generated from DESeq2 dataset 
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Heatmap 

By comparison, you can also use a heatmap based on the number of DEG’s to summarize 

the same information. Using a color spectrum based on the magnitude of the DEG count, 

the DEG heatmap can provide an easy way to read and interpret. For a DEG heatmap, each 

cell represents the number of DSNs in that particular intersecting row and column. 

Arrangements along the selected color spectrum, provide a visual indication of magnitude. 

Treatment group. The DEG heatmap has obvious drawbacks in terms of redundancy. For 

the three factor levels, this figure 9 is a good representation of the data. However, increasing 

the number of factor levels will generate redundant cells. Cells are usually left blank to 

avoid misleading the user. This method is counterproductive because it requires more effort 

to interpret the information efficiently. As the number of factor levels increases, the 

usefulness of this type of visualization diminishes and is recommended only for some factor 

levels. According to the heatmap, the white color shows the upregulated genes while the 

black color shows the downregulated genes.  

 

Fig 9: Heatmap generated from DESeq2 dataset 
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Dispersion Plot 

Another relatively simple visualization method associated with Tier 1 is to compare 

expression levels between two samples or two treatment groups. This comparison is 

typically visualized using a scatter plot. Each data point represents a single gene and its 

placement indicates the average expression level for each of the two treatments. A scatter 

plot implemented in this way can be used to make a larger comparison between the two 

treatment groups. The axes represent the expression levels for each category, so the data 

points along the diagonal show similar expression levels from both groups. Data points 

above or below the diagonal indicate higher or lower expression levels of factor levels on 

the y-axis compared to factor levels on the x-axis, respectively. Considering this scatter 

plot as a whole, clustering of all data points along the diagonal shows two samples or 

treatments with very similar expression patterns across all genes, with the spread of data 

points from the diagonal. Larger values indicate dissimilar expression levels. Hence, the 

figure 10 shows that the gene is negatively regulated. 

 

Fig 10: Dispersion Plot generated from DESeq2 dataset 
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PCA Biplot 

The PCA Biplot also known as Principal Components Analysis Biplot is a two-dimensional 

chart that represents the relationship between the rows and columns. Hence, in this case the 

PCA Biplot is the representation of the relationship of the rows and columns of the count 

data in DEG as shown in figure 11. 

 

Fig 11: PCA Biplot generated from DESeq2 dataset 

 



27 
 

The table 2 shows the Gene id, base mean, log 2 fold change and p value of the samples, 

after differentially expressed gene analysis, it shows the first 20 output of the following 

table. 

Table 2: First 20 output of the fold change and p value of the samples 
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CONCLUSION 

In this study, I have learned to analysed the RNA Seq data of skin disease psoriasis by using 

R. In this study, I have learned to check the quality of the data using Fast QC, then reference 

index was build for human reference genome, followed by alignment was done for pair end 

sequence using Rsubread package. Feature count was done to get the count data of the 

sample sequence. Then, differentially expressed gene analysis was done with the help of 

count data. Results were generated in the form of volcano plot, MA plot, heatmap, 

dispersion plot and PCA Biplot. 

 

Our results suggest negative correlation through the expression levels of psoriasis. It 

highlights that the samples regulated by TWEAK and TNF inhibit the expression of 

psoriasis genes. This indicates the use of TWEAK and TNF as a possible treatment for 

psoriasis. 

 

DEG is often used to determine genotype differences between two or more cellular states 

to support studies based on specific hypotheses. Interpretation of this information can 

greatly benefit from the graphic display of the result file. Tier 1 functions provide relatively 

basic levels of information, including read count distributions, pairwise levels, and those 

used to visualize DEG counts, while Tier 2 functions provide average level, use additional 

metrics such as multiple changes, P-values-provide more detailed and informative 

visualizations. Box plots, violin plots, dot plots, and read count histograms provide insight 

into the distribution of read counts for each sample or processing group. Scatter plots allow 

users to visualize the overall similarity of expression levels by showing the expression 

levels of each gene in the two selected treatments or samples. The DEG histogram and 

heatmap directly represent the number of DEGs in each comparison. MA and volcano 

charts are useful for showing relative expression levels, changes in log multiples, and 

adjusted P-values. Although not applicable to all users, 4-way plots can provide a higher 

level of detail by including a third treatment group or sample as a relative or control group. 
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Introduction The Central Dogma of Molecular Biology outlines the flow of information that is stored in genes as DNA,

transcribed into RNA, and finally translated into proteins (Crick, 1958; Crick, 1970).

Early

79% MATCHING BLOCK 7/20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4 ...

gene expression studies relied on low-throughput methods such as Northern blots and quantitative polymerase chain

reaction (qPCR), but these were limited to single

transcript measurements.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/


https://secure.urkund.com/view/135597243-199313-106170#/ 2/15

55% MATCHING BLOCK 2/20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4 ...

The development of next-generation high-throughput sequencing (NGS) has revolutionized transcriptomics by

enabling RNA analysis with complementary DNA (cDNA) sequencing (Wang et al., 2009). This method, called RNA-

Sequencing, has clear advantages over previous approaches and has revolutionized the understanding of the complex

and dynamic nature of the transcriptome. RNA-Sequencing provides a more detailed and quantitative view of gene

expression, alternative splicing, and allele-specific expression. Recent advances in RNA-Sequencing workflows, from

sample preparation to sequencing platforms to bioinformatics data analysis, have enabled detailed transcriptome

profiling and the ability to elucidate

a variety of physiological and pathological conditions. rice field.
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The advent of high-throughput next-generation sequencing (NGS) technology has revolutionized transcriptomics. This

technological development solves many

of the challenges posed by the hybridization-based microarray and Sanger sequencing-based approaches previously

used to measure gene expression. High-throughput sequence (HTS) data analysis is a complex multi-step process. Many

bioinformatics tools are available at most steps, and most tools require different parameters to be set. Due to this

complexity, HTS data analysis is particularly prone to reproducibility and consistency issues. The high-throughput

sequencer enables transcriptome inspection. The transcriptome is a set of intracellular ribonucleic acids, including

messenger ribonucleic acid (mRNA), transfer ribonucleic acid (tRNA), ribosomal ribonucleic acid (rRNA), small nucleus

ribonucleic acid (snRNA), and non-coding ribonucleic acid (ncRNA), others. These RNAs are expressed differentially

depending on the tissue, physiological state, or developmental stage (Gupta et al., 2021). Interpreting the complexity of

the transcriptome is an important goal for understanding the functional elements of the genome, and therefore for

understanding how the disease functions and signs of progress. In this sense, the amount of non-coding DNA has

recently been shown to increase with biological complexity, increasing by 0.25% in the prokaryotic genome and 98.8% in

the human genome. Existing complexity associated with the discovery of small intrinsic

disturbances RNA (siRNA), long-scattered non-coding RNA (lincRNA), transcription initiation RNA (tiRNA), microRNA

(miRNA), transcription initiation site-related RNA (TSSa-RNA), etc. is the transcription puzzles we need. Represents a

piece of. Elucidate to understand how the genome works. Psoriasis is one of the most common immune inflammatory

skin diseases, affecting approximately 125 million people worldwide and more than 8 million in the United States

(Rachakonda et al., 2014). Psoriasis lesions can exhibit a variety of clinical manifestations, including acanthosis (increased

epidermal thickness), keratin proliferation, parakeratosis, hypervascularization, and dense skin infiltration of immune cells

(Gran et al.,2020). Keratinocytes have central importance for inducing early pathogenic events and for increasing

psoriatic inflammation during the course of the disease (Albanesi et al., 2018, Benhadou et al., 2019). In response to

external and internal threat stimuli, keratinocytes can be a source of innate immune mediators. These include various

pro-inflammatory cytokines and chemokines that mobilize cells important for innate and adaptive immune responses (Li

et al., 2014, Takagi et al., 2016). The IL-23 / IL-17 axis and TNF were first identified in animal studies as the centre of

pathogenesis for skin inflammation such as psoriasis, and their role is now being demonstrated in humans. IL-36γ is also

strongly associated with human psoriasis. IL-36γ is produced by keratinocytes and can induce the expression of the IL-23

gene in keratinocytes (Goldstein et al., 2020). Therefore, it is possible to drive a strengthening loop from IL-23 back to IL-

17, IL-36γ, and IL-23, thereby maintaining the condition. All of these cytokines are elevated in psoriatic skin lesions, and

proper neutralization of TNF, IL-23 p19, or IL-17A has shown potential therapeutic effects in psoriatic patients (Gran et al.,

2020, Schon, 2019, Yamanaka et al., 2021). Although these current treatments have proven to be effective, some patients

do not respond or become refractory over time, or the disease relapses when treatment is stopped. Therefore,

understanding the pathological mechanisms that can occur in psoriasis requires further efforts, such as identifying new

molecules that can be targeted alone or in combination with existing therapies. TNF and IL-17 are two cytokines that

promote dysregulated keratinocyte activity, and their targeting is very effective in psoriasis patients, but whether these

molecules interact with other inflammatory factors. Is not clear. Here, mice with a keratinocyte-specific deletion of Fn14

(Tnfrsf12a), a receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), have imiquimod-induced skin inflammation

such as decreased epidermal hyperplasia and
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decreased expression of the psoriasis signature gene. Indicates a decrease in. This corresponded to the expression of

Fn14 in the keratinocytes of human psoriasis lesions and TWEAK being found in several sub-sets of skin cells.

Transcriptomic studies in human keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in

upregulating the expression of CXC chemokines, along with cytokines such as IL-23, inflammation-associated proteins

like S100A8/9 and SERPINB1/B9, all previously found to be highly expressed in the lesional skin of psoriasis patients

(Gupta et al., 2021) Although these current treatments have proven efficacy, some patients fail to respond or become

resistant to therapy over time, or their disease comes back when treatment is stopped. Therefore, continuing efforts to

understand the pathological mechanisms that might occur in psoriasis are needed, including identifying novel molecules

that can be targeted alone or combined with existing therapies. TNF-like weak inducer of apoptosis (TWEAK, TNFSF12)

can be expressed similar to TNF (TNFSF2) is a membrane-bound molecule or soluble cytokine by a variety of cell types

including structural and immune cells (Chicheportiche et al., 1997, Bird et al., 2013). TWEAK binds to Fn14 (fibroblast

growth factor inducible 14, TNFRSF12A) and regulates many cellular activities such as proliferation, migration,

differentiation, apoptosis, and angiogenesis (Leng et al., 2011). TWEAK is involved in the pathogenesis of several

inflammatory and autoimmune diseases (Burkly, 2014, Doerner et al., 2016). Recently, we have discovered that TWEAK-

deficient mice are protected from exhibiting severe imiquimod-induced skin inflammation with some characteristics of

psoriasis. Gene set enrichment analysis suggests an association between Fn14 transcripts and their signaling mediators in

human psoriasis lesions (Leng et al., 2011). The pathogenic activity of TWEAK was subsequently validated by another

group using Fn14-deficient mice in the same experimental model (Doerner et al., 2015). Other literature has found that

soluble TWEAK is upregulated in the sera of psoriasis patients and that expression of both TWEAK and Fn14 is detected at

high levels in tissue sections of psoriasis-damaged skin (Sidler et al., 2017, Peng et al., 2018). A new therapeutic approach

to reduce skin lesions in psoriasis. The TWEAK primary cell target in the skin is unclear. Subcutaneous injection of

recombinant TWEAK bolus into mice was found to result in skin inflammation and some histological features reminiscent

of human psoriasis. It was associated with the production of a series of chemokines that attract the innate and adaptive

immune cells characteristic of psoriasis (Sidler et al., 2017). Many of these chemokines are products of keratinocytes, and

Fn14 is expressed in keratinocytes

(Sidler et al., 2017), suggesting that this cell type may be central to the action of TWEAK. Before considering clinical

treatment for this pathway, how TWEAK in the skin, especially on keratinocytes, and its relationship to other pathogenic

molecules such as IL-17 and TNF that also have receptors on keratinocytes In this study, we investigated if TWEAK

signalling specifically in keratinocytes is required to develop psoriasis-like skin lesions after imiquimod treatment using

Fn14-conditional knockout mice, and also performed RNA-sequencing analysis in human epidermal keratinocytes to

determine how TWEAK alone or in combination with IL-17 and TNF controls expression of a variety of gene sets found to

be upregulated in human psoriasis. Our data demonstrate that Fn14 signalling in keratinocytes is crucial for the

development of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish substantial similarities

in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, and notably, we found strong synergistic activities of

these cytokines acting together on a number of genes associated with psoriasis. Correspondingly, a similar effect of

blocking TWEAK therapeutically was observed in reducing skin lesions in mice compared to blocking either TNF or IL-

17A, and no greater effect was seen with combination treatments. These results suggest that TWEAK might be as good a

target to counter the keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as observed

when IL-17 and TNF are neutralized (Wang et al., 2021, Bilgic et al., 2016) The main goal of many gene expression

experiments is to detect transcripts that exhibit differential expression under a variety of
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conditions. Extensive statistical approaches have been developed to test differential expression using microarray data,

and the continuous probe intensity of the entire replication can be approximated by a normal distribution (Chandran and

Raychaudhuri, 2010, Cui and Churchill, 2003, Smyth, 2004). While these approaches can, in principle, be applied to RNA-

Sequencing data, other statistical models of discrete read counts that do not fit the normal distribution should be

considered.
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Early RNA-Sequencing studies showed that the distribution of read counts throughout replication follows a Poisson

distribution. This formed the basis for modelling RNA-Sequencing count data (Grant et al., 2005). However, further

studies
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have shown that biological variability is not captured by Poisson's assumptions and leads to
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high false positive rates due to underestimation of sampling errors (Marioni et al., 2008, Anders and Huber, 2010,

Lanhmead et al., 2010). Therefore, a negative binomial distribution model that describes overdispersion or extra-

Poisson variability has been shown to best fit the distribution of read counts across biological

replication.

Review of Literature Psoriasis Vulgaris is a chronic disease that affects 1–3% of the population (Rohinson and Oshlack,

2010). In addition to the possible involvement of skin and joints, recent evidence suggests a link between psoriasis and

other systemic disorders (Gelfand et al., 2006). The molecular properties of psoriasis skin samples have led to a better

understanding of the etiology of the disease and helped identify therapeutic targets (Lebwohi, 2003). Psoriasis is one of

the most common chronic inflammatory skin diseases, affecting 1-3% of the adult population worldwide (Lebwohi,

2003). It is characterized by marked overgrowth and inadequate end differentiation of keratinocytes. In addition,

complex interactions between different cell types and various cytokines are known to contribute to the development of

psoriasis. The etiology is also based on complex interactions between genetic predisposition, important

histocompatibility alleles, and various environmental triggers (Lowes et al., 2007). However, from a molecular

perspective, the mechanisms responsible for the interaction of keratinocytes with the inflammatory cells that infiltrate

the epidermis are not yet fully understood. Analysis of the molecular background of psoriasis describes many disease-

related genes and proteins with aberrant expression patterns (Nomura et al., 2003), but little is known about the

regulatory pathways responsible for this aberrant expression. Recent evidence suggests that non-coding RNAs such as

microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) contribute to the pathogenesis of psoriasis by affecting

protein expression and function in both keratinocytes and inflammatory cells. It suggests that it may be (Sonkoly et al.,

2007, Zibert et al., 2010, Ahn et al., 2016, Gupta et al., 2016, Tsoi et al., 2015). RNA Sewing Fundamentals:
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RNA Sequencing is the use of next-generation high-throughput sequencing technology to study, characterize, and

quantify genomic transcriptomes (Morin et al., 2008). Unlike previous methods, RNA sequencing uses synthetic

techniques to define nucleotide sequences and quantify RNA molecules in a sample (Wang et al., 2009). Next-

generation sequencing (NGS) can faithfully process this data in hours to days, making it an ideal method for RNA

analysis among many researchers (Kolodziejczyk et al., 2015). The use of this technology in research and literature has

exploded in popularity.

With recent discoveries in the use of RNA sequencing in many pathologies,
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there are many promising potential clinical applications for RNA sequencing (Beane et al., 2011). Several commercially

available RNA sequencing kits are available for each sample. Most follow similar processing steps but ultimately depend

on experimental considerations (

Chu and Corey, 2012). Analysis of
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total RNA, mRNA, and small RNA can be performed with most kits.

To isolate
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mRNA, use poly (T) primers attached to beads or magnets to bind mRNA and isolate these strands. For small or non-

coding RNA, gel electrophoresis is used to separate these molecules. Complete RNA separation uses a combination of

these two techniques (

Tuch et al., 2010). Then ligate the adapter
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to the 5'end, 3'end, or both. When RNA is isolated, cDNA is generated, amplified, and fragmented. Some kits provide

RNA sequencing directly without creating cDNA. Although rRNA makes up a significant proportion of total RNA

and can be removed, it has

48% MATCHING BLOCK 12/20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5 ...

little research interest. These samples are then sequenced by next- generation massively parallel sequencing

technology that utilizes sequencing by synthesizing short DNA strands complementary to cDNA. Once the reads are

generated, the software can be used to analyse the sequence reads and match the reads to parts of the genome.

You can also create a de novo transcriptome map by mapping gene fragments with sequencing analysis software. The

total number of reads for each gene product can be used to quantify proportional gene expression (Han et al., 2015). The

use of RNA-Sequencing has recently increased due to advances beyond previous attempts in transcriptome research.

Prior to NGS RNA sequencing, two well-known
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techniques were available. Hybridization of cDNA probes connected to microarrays enabled transcriptome analysis but

was limited by the need for extensive knowledge of genomes, transcripts, alternative splicing, and exons.

The background noise produced by cross-hybridization also limited resolution during attempts to quantify gene

expression. Another technique

86% MATCHING BLOCK 14/20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5 ...

was Sanger sequencing, which used chain termination to determine nucleotide sequences. In contrast to NGS,

the Sanger method was more expensive and time- consuming and could only analyze a limited portion of the transcript

(Morin et al., 2008, Wang et al., 2009, Burroughs et al., 2013). Discovery of both non-coding RNAs such as. B. miRNAs

(miRNAs) have required
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the creation of assays to test these small non-coding RNAs with variant mRNAs at high throughput and

high resolution, as well as the discovery of post-transcriptional mRNA expression regulation (Klerk and Hoen, 2015).

RNA- Sequencing techniques allow researchers to perform both of these tasks and quantify
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RNA expression, and thus gene expression, in a single assay. The high throughput of RNA
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sequences allows the transcriptome to be analyzed and efficiently compared across different environmental factors such

as time, different tissue samples, pathological conditions, and pharmacological interventions. The potential for de novo

transcriptome synthesis allows the analysis and discovery of new products without the need for
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prior genomic and transcriptional knowledge of the sample. The resolution of RNA sequences also enables the

identification of single nucleotide polymorphisms, novel post- transcriptional modifications, novel alternative splicing

patterns, and previously unidentified non-coding RNA molecules. RNA sequencing provides accurate quantification of

mRNA expression compared

to real-time PCR experiments (Scapato et al., 2015, de Klerk et al., 2014, Derks et al., 2015). RNA sequences can be used

to study the molecular basis of
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disease susceptibility, cancer etiology/progression, and response to treatment. RNA sequences have been used to

analyze the etiology of various malignancies such as psoriasis, lung cancer, and colon cancer. RNA sequencing can

identify differential expression of genes (DEGs), mutant genes, fusion genes, and gene isoforms in pathological

conditions. RNA sequencing also has potential for diagnostic and therapeutic applications. Current research on

colorectal disease using RNA sequencing reveals new discoveries that may help clinicians in the future

management of patients with colorectal disease. Transcriptome analysis is an important tool for characterizing and

understanding the molecular basis of phenotypic changes in biology, including disease. In recent decades, microarrays

have been the most important and widely used approach to such analysis, but recently high-throughput cDNA

sequencing (RNA-sequencing) has emerged as a powerful alternative (Mortazavi et al., 2008). Many applications have

already been found (Chen et al., 2011). RNA-sequencing uses next-generation sequencing (NGS) methods to sequence

cDNA from RNA samples, producing millions of short reads. These reads are then typically mapped to the reference

genome, and the number of reads mapped within the genomic traits of interest (such as genes or exons) is used as a

measure of the frequency of the traits of the analyzed sample (Oshlack et al., 2010). Perhaps the most common use of

transcriptome profiling is to search for differentially expressed (DE) genes. H. Look for genes that show differences in

expression levels between conditions, or genes that are associated with a particular predictor or response. RNA-

sequencing offers several advantages over microarrays for differential expression analysis. B. Ability to detect and

quantify previously unknown transcripts and isoforms with increased dynamic range and reduced background levels

(Agrawal et al., 2010, Bradford et al., 2010, Bullard et al., 2010). However, analysing RNA-sequencing data can be difficult.

Some of these issues are unique to next-generation sequencing methods. For example, differences in nucleotide

composition between genomic regions mean that
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reading ranges may not be uniform throughout the genome. In addition, more reads are mapped to longer genes than

shorter genes with the same expression level. In differential expression analysis, where genes are individually tested for

differences in expression between conditions, biases within the sample are usually ignored as they are expected to affect

all samples in a similar manner (Agrawal et al., 2010). RNA-sequencing experiments show other types of heterogeneity

between samples. First, the depth of the sequence or the library size (total number of reads allocated) usually varies from

sample to sample. That is, the counts observed between the samples cannot be compared directly. In fact, even in the

absence of true differential expression, if one sample is sequenced twice as deep as another, then all genes in the first

sample receive twice as many as the second sample. It is expected that we would like to avoid such confusion. The

effect of true differential expression. The easiest way to approach different library sizes is to simply rescale or resample

the read counts to get the same library size for all samples. However, such normalization is generally not sufficient. This

is because RNA-Sequencing counts essentially represent the relative abundance of genes, even if the libraries are actually

the same size. Some highly expressed genes can make up a very large proportion of the reads sequenced in the

experiment, so few reads need to be assigned to the remaining genes (Bullard et al., 2010). Therefore, the presence of a

small number of highly expressed genes suppresses the count of all other genes, and the latter group of genes are mis

expressed compared to samples with more evenly distributed reads. It is misunderstood that it can appear low and can

lead to many genes. More complex normalization schemes have been proposed to address this difficulty and allow

counts to be compared between samples (Bullard et al., 2010, Anders and Huber, 2010, Robinson and Oshlack, 2010). In

addition to library size, these methods also include estimating sample-specific normalization coefficients. It is used to

rescale the observed count. Using these normalization methods, the sum of the normalized counts across all genes are

therefore not necessarily equal between samples (as it would be if only the library sizes were used for normalization), but

the goal is instead to make the normalized counts for non-differentially expressed genes similar between the samples. In

this study, we use the TMM normalization (trimmed mean of M-values (Robinson and Oshlack, 2010)) and the

normalization provided in the DESeq package (Anders and Huber, 2010). A comprehensive evaluation of seven different

normalization methods was recently performed (Dillies et al., 2012), in which these two methods were shown to perform

similarly, and they were also the only ones providing

satisfactory results with respect to all metrics used in that evaluation. Still, it is important to keep in mind that even these

methods are based on an assumption that most genes are equivalently expressed in the samples, and that the

differentially expressed genes are divided more or less equally between up- and downregulation (Dillies et al., 2012).

Microarrays have been used routinely for differential expression analysis for over a decade, and there are well-established

methods available for this purpose (such as limma (Smyth, 2004)). These methods cannot be easily migrated to the

analysis of RNA- sequencing data (Robinson and Smyth, 2008). It is different from the data obtained from the microarray.

Intensities recorded from microarrays are treated as continuous measurements and are generally assumed to follow a

lognormal distribution, but counts from RNA-sequencing experiments are non-negative integers and therefore

essentially follow a discrete distribution. Poisson distribution and negative binomial distribution (NB) are the two most

commonly used models in the method explicitly developed for differential expression analysis of this type of count data

(Anders and Huber, 2010, Robinson and Symth, 2008, Auer and Doerge, 2011, Hardcastle and Kelly, 2010, Di et al., 2011).

Other distributions such as the beta-binomial distribution (Zhou et al., 2011) have also been proposed. The Poisson

distribution has the advantage of simplicity, with only one parameter, but limits the variance of the modelled variables to

the mean. The negative binomial distribution has two parameters that encode the mean and variance, so you can model

the more general mean and variance relationship. For RNA- sequencing, the Poisson distribution has been suggested to

be suitable for the analysis of engineering replication, but with high variability between biological replications, it is

accompanied by overdispersion, such as a negative binomial distribution. Distribution is required (Bullard et al., 2010,

Marioni et al., 2008). Some software packages represent RNA-sequencing data in converted quantities instead of using

integers directly. Long transcripts are expected to receive more reads than short transcripts with the same expression

level, so the goal of such a conversion is to normalize the count in relation to various library sizes and transcript lengths.

Is to do. Other normalization strategies can be used to address other biases, such as biases due to variable GC content in

reads. After such a conversion, the resulting value will no longer be an integer count. That is, you should not plug in

numerical-based methods for differential expression analysis. Therefore, of the methods evaluated in this study, only

nonparametric methods are suitable for RPKM
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values. Other software, such as Cufflinks / Cuffediff (Trapnell et al., 2010), provides an integrated analytical pipeline from

aligned reads to derivative results by inference based on FPKM values. The field of differential expression analysis of RNA-

sequencing data is still in its infancy, and new methods are constantly being introduced. To date, there has been no

general consensus on which method works best in a particular situation, and few detailed comparisons between the

proposed methods have been published. In a recent publication (Kyam et al., 2012), four parametric methods were

compared in terms of their ability to distinguish between truly differentially expressed (DE) and truly non-DE genes under

different simulation conditions. The authors also compared duplications between sets of DE genes found differently in

practice data set. Another recent study (Robles et al., 2012) evaluated the effect of increased sequence depth on the

ability to detect the DE gene and contrasted this with the benefits of increased sample size, the latter demonstrating to

be significantly greater. In (Nookaew et al., 2012), the authors published a case study on Saccharomyces cerevisiae,

comparing the results of several differential expression analysis methods of RNA-sequencing with each other, comparing

them with the results of microarrays, and generally between different methods. In this study, we investigated if TWEAK

signalling specifically in keratinocytes is required to develop psoriasis-like skin lesions after imiquimod treatment using

Fn14-conditional knockout mice, and also performed RNA-sequencing analysis in human epidermal keratinocytes to

determine how TWEAK alone or in combination with IL-17 and TNF controls expression of a variety of gene sets found to

be upregulated in human psoriasis. Our data demonstrates that Fn14 signalling in keratinocytes is crucial for the

development of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish substantial similarities

in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, and notably we found strong synergistic activities of

these cytokines acting together on a number of genes associated with psoriasis. Correspondingly, a similar effect of

blocking TWEAK therapeutically was observed in reducing skin lesions in mice compared to blocking either TNF or IL-

17A, and no greater effect was seen with combination treatments. These results suggest that TWEAK might be as good a

target to counter the keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as observed

when IL-17 and TNF are neutralized (Gupta et al., 2021).

Materials and Method The sample sequences were downloaded from the NCBI GEO Dataset (Gupta et al., 2021).

10samples of paired-end sequencing were selected, out of which 6 were TWEAK stimulated and 4 were TNF stimulated,

the metadata of the samples was downloaded on the workstation having an Intel Xeon 3.20GHz x20 processor and

132GB of RAM. Workflow is the series of activities that are necessary to complete a task. Each step in a workflow has a

specific step before it and a specific step after it. Quality Control by Fast QC Then, the data were analyzed for quality

control and trimming using Fast QC, which provides a simple way to do some quality control checks on raw sequence

data coming from high throughput sequencing pipelines, and the outcome of the Fast QC analysis shows whether the

trimming is needed or not. Comparing the results from standards suggests, that trimming is not needed in the data

obtained, the result of Fast QC is also shown in the below figures. The data was good with little noise. Building the

reference index by RStudio The Human reference genome of the human was downloaded for building a reference index

for alignment and mapping of the sequence from NCBI (National Center for Biotechnology Information), the reference

index was built using RStudio, using the Rsubread package and the base name was given as “chr1_mm10”, the figure is

attached below. Genome indexing can be described in a similar way to book indexing. If you want to know on which

page a particular word appears or where a chapter begins, it's much more efficient / faster to look it up in a ready-made

index than to look it up until you find each page in the book. The same is true for linear. Indexes allow aligners to narrow

down potential origins of query sequences in the genome, saving both time and memory. Alignment using Rsubread

Then, the alignment was done using pair-end sequencing alignment, by RStudio and by taking two FASTA files as input,

the output files are in BAM format using the reference index, Rsubread can be used for many processes like- Alignment,

quantification, and analysis of RNA sequencing data (including both bulk RNA-seq and scRNA-seq) and DNA sequencing

data (including ATAC-seq, ChIP-seq, WGS, WES, etc). Includes functionality for reading mapping, read counting, SNP

calling, structural variant detection, and gene fusion discovery. Can be applied to all major sequencing technologies and

to both short and long sequence reads (Liao et al., 2019) The following results were obtained after alignment; the list of

files is shown in below figure. Feature Count using Rsubread in terminal After the alignment, we got one BAM file instead

of two FASTA files and then the feature count was done in order to get the count table, it was done by using Rsubread in

the Ubuntu terminal and the out was in the form of the count.out file. The count data are structured as a table, which

reports the number of sequence fragments assigned to each gene for each sample, the count data were further filtered

for null, NA, and negative values in the table, as these values show errors in further steps. The count data output for 10

samples were 47895, but after filtering the negative values, NULL values, NA values and zero values, only 7322 reading

were left for further analysis of Differentially Expressed Genes. Feature Count is a general-purpose read summarization

function, which assigns to the genomic features (or meta-features) the mapped reads that were generated from

genomic DNA and RNA sequencing. RNA-seq reads may be aligned to the transcriptome rather than the genome. In this

case, there can be hundreds of thousands of transcripts, and each transcript becomes a reference sequence.

featureCounts supports thread-specific read counts when thread-specific information is provided (Yang et al., 2014).

Differentially Expressed Genes
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normalized read count data and performing statistical analysis to discover quantitative changes in expression levels

between experimental groups. The differentially Expressed genes was done in RStudio using package DESeq2, the

following steps were followed, firstly the tables are converted to matrix, then the conditions are assigned to the data, the

data was then loaded to DESeq pipeline and different types og plots and graphs were obtained according to the need of

the analysis, like- dispersion plot, heatmap, scatter plot, histogram, MA plot, volcano plot, etc. Result and Discussion

Volcano Plot Another common and interesting comparison between the two treatment conditions is the adjusted P-

value and log fold change. This figure is called a volcano plot because it resembles an exploding volcano, with clusters of

data points near the origin and the fanning effect moving away from its central location. The volcanic plot shows the

statistical significance of the difference to the magnitude of the difference between the individual genes compared.

Usually indicated by a fold change of negative base 10log or base 2log, respectively. The P-value undergoes a negative

transformation, so the higher the data point along the y-axis, the smaller the P-value. Volcano graphs are generally

considered to be statistically differentially expressed based on the adjusted P value of the difference between treatments,

including some threshold indicators of the adjusted P value. Indicates the gene to be used. Changes in log multiples

along the x-axis show a clearer difference in extrema, and data points close to 0 represent genes with similar or same

mean expression levels. In the case of volcanic areas, as the name implies, it is expected to be quite widespread. The

wide dispersal indicates two treatment groups with significant differences in gene expression. It is quite rare for a volcano

plot to have almost or all data points gathered near the origin. MA Plot The MA chart can only compare two treatment

conditions at a time. However, all pairwise comparisons in this figure can be combined in a matrix format to provide

all possible combinations at once. In this figure, each cell represents a particular comparison, shown cell by cell or at the

intersection of rows and columns. This visualization allows the user to view all pairwise fold change comparisons and

average manifestations at once. In addition, this method allows direct comparison of pairwise treatment comparisons. It

provides an approach for determining which treatment comparisons are more or less similar in terms of both fold

change changes and mean expression levels. Like other matrix options, this process allows the user to visualize all

treatment-based comparisons in one diagram. Heatmap By comparison, you can also use a heatmap based on the

number of DEG’s to summarize the same information. Using a color spectrum based on the magnitude of the DEG

count, the DEG heatmap can provide an easy way to read and interpret. For a DEG heatmap, each cell represents the

number of DSNs in that particular intersecting row and column. Arrangements along the selected color spectrum,

provide a visual indication of magnitude. Treatment group. The DEG heatmap has obvious drawbacks in terms of

redundancy. For the three factor levels, this figure is a good representation of the data. However, increasing the number

of factor levels will generate redundant cells. Cells are usually left blank to avoid misleading the user. This method is

counterproductive because it requires more effort to interpret the information efficiently. As the number of factor levels

increases, the usefulness of this type of visualization diminishes and is recommended only for some factor levels.

According to the heatmap the white colour shows the upregulated genes while the black colour shows the down

regulated genes. Dispersion Plot Another relatively simple visualization method associated with Tier 1 is to compare

expression levels between two samples or two treatment groups. This comparison is typically visualized using a scatter

plot. Each data point represents a single gene and its placement indicates the average expression level for each of the

two treatments. A scatter plot implemented in this way can be used to make a larger comparison between the two

treatment groups. The axes represent the expression levels for each category, so the data
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points along the diagonal show similar expression levels from both groups. Data points above or below the diagonal

indicate higher or lower expression levels of factor levels on the y-axis compared to factor levels on the x-axis,

respectively. Considering this scatter plot as a whole, clustering of all data points along the diagonal shows two samples

or treatments with very similar expression patterns across all genes, with the spread of data points from the diagonal.

Larger values indicate dissimilar expression levels. Hence, the below graph shows that the gene is negatively regulated.

PCA Biplot The PCA Biplot also known as Principal Components Analysis Biplot is a two-dimensional chart that

represents the relationship between the rows and columns. Hence, in this case the PCA Biplot is the representation of

the relationship of the rows and columns of the count data in DEG. Conclusion In this study, I have learned to analysed

the RNA Seq data of skin disease psoriasis by using R. In this study, I have learned to check the quality of the data using

Fast QC, then reference index was build for human reference genome, followed by alignment was done for pair end

sequence using Rsubread package. Feature count was done to get the count data of the sample sequence. Then,

differentially expressed gene analysis was done with the help of count data. Results were generated in the form of

volcano plot, MA plot, heatmap, dispersion plot and PCA Biplot. Our results suggest negative correlation through the

expression levels of psoriasis. It highlights that the samples regulated by TWEAK and TNF inhibit the expression of

psoriasis genes. This indicates the use of TWEAK and TNF as a possible treatment for psoriasis.

DEG is often used to determine genotype differences between two or more cellular states to support studies based on

specific hypotheses. Interpretation of this information can greatly benefit from the graphic display of the result file. Tier 1

functions provide relatively basic levels of information, including read count distributions, pairwise levels, and those used

to visualize DEG counts, while Tier 2 functions provide average level, use additional metrics such as multiple changes, P-

values-provide more detailed and informative visualizations. Box plots, violin plots, dot plots, and read count histograms

provide insight into the distribution of read counts for each sample or processing group. Scatter plots allow users to

visualize the overall similarity of expression levels by showing the expression levels of each gene in the two selected

treatments or samples. The DEG histogram and heatmap directly represent the number of DEGs in each comparison. MA

and volcano charts are useful for showing relative expression levels, changes in log multiples, and adjusted P-values.

Although not applicable to all users, 4-way plots can provide a higher level of detail by including a third treatment group

or sample as a relative or control group.

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/20 SUBMITTED TEXT 32 WORDS

Introduction The Central Dogma of Molecular Biology

outlines the flow of information that is stored in genes as

DNA, transcribed into RNA, and finally translated into

proteins (Crick, 1958; Crick, 1970).

100% MATCHING TEXT 32 WORDS

Introduction The central dogma of molecular biology

outlines the flow of information that is stored in genes as

DNA, transcribed into RNA, and finally translated into

proteins (Crick 1958; Crick 1970).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/



https://secure.urkund.com/view/135597243-199313-106170#/ 11/15

2/20 SUBMITTED TEXT 89 WORDS

The development of next-generation high-throughput

sequencing (NGS) has revolutionized transcriptomics by

enabling RNA analysis with complementary DNA (cDNA)

sequencing (Wang et al., 2009). This method, called RNA-

Sequencing, has clear advantages over previous

approaches and has revolutionized the understanding of

the complex and dynamic nature of the transcriptome.

RNA-Sequencing provides a more detailed and

quantitative view of gene expression, alternative splicing,

and allele-specific expression. Recent advances in RNA-

Sequencing workflows, from sample preparation to

sequencing platforms to bioinformatics data analysis,

have enabled detailed transcriptome profiling and the

ability to elucidate

55% MATCHING TEXT 89 WORDS

The development of high-throughput next-generation

sequencing (NGS) has revolutionized transcriptomics by

enabling RNA analysis through sequencing of

complementary DNA (cDNA) ( Wang et al. 2009). This

method, termed RNA sequencing (RNA-Seq), has distinct

advantages over previous approaches and has

revolutionized our understanding of the complex and

dynamic nature of the transcriptome. RNA-Seq provides a

more detailed and quantitative view of gene expression,

alternative splicing, and allele-specific expression. Recent

advances in the RNA-Seq workflow, from sample

preparation to sequencing platforms to bioinformatic

data analysis, has enabled deep profiling of the

transcriptome and the opportunity to elucidate

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/

3/20 SUBMITTED TEXT 17 WORDS

The advent of high-throughput next-generation

sequencing (NGS) technology has revolutionized

transcriptomics. This technological development solves

many

66% MATCHING TEXT 17 WORDS

The introduction of high-throughput next-generation

sequencing (NGS) technologies revolutionized

transcriptomics. This technological development

eliminated many

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/

4/20 SUBMITTED TEXT 15 WORDS

conditions. Extensive statistical approaches have been

developed to test differential expression using microarray

data,

85% MATCHING TEXT 15 WORDS

conditions. Extensive statistical approaches have been

developed to test for differential expression with

microarray data,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/

5/20 SUBMITTED TEXT 33 WORDS

Early RNA-Sequencing studies showed that the

distribution of read counts throughout replication follows

a Poisson distribution. This formed the basis for

modelling RNA-Sequencing count data (Grant et al.,

2005). However, further studies

59% MATCHING TEXT 33 WORDS

Early RNA-Seq studies suggested that the distribution of

read counts across replicates fit a Poisson distribution,

which formed the basis for modeling RNA-Seq count

data (Marioni et al. 2008). However, further studies

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/



https://secure.urkund.com/view/135597243-199313-106170#/ 12/15

6/20 SUBMITTED TEXT 49 WORDS

high false positive rates due to underestimation of

sampling errors (Marioni et al., 2008, Anders and Huber,

2010, Lanhmead et al., 2010). Therefore, a negative

binomial distribution model that describes overdispersion

or extra-Poisson variability has been shown to best fit the

distribution of read counts across biological

46% MATCHING TEXT 49 WORDS

high false-positive rates due to underestimation of

sampling error (Anders and Huber 2010; Langmead et al.

2010; Robinson and Oshlack 2010). Hence, negative

binomial distribution models that take into overdispersion

or extra-Poisson variation have been shown to best fit the

distribution of read counts across biological

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/

7/20 SUBMITTED TEXT 24 WORDS

gene expression studies relied on low-throughput

methods such as Northern blots and quantitative

polymerase chain reaction (qPCR), but these were limited

to single

79% MATCHING TEXT 24 WORDS

gene expression studies relied on low-throughput

methods, such as northern blots and quantitative

polymerase chain reaction (qPCR), that are limited to

measuring single

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863231/

8/20 SUBMITTED TEXT 85 WORDS

RNA Sequencing is the use of next-generation high-

throughput sequencing technology to study,

characterize, and quantify genomic transcriptomes

(Morin et al., 2008). Unlike previous methods, RNA

sequencing uses synthetic techniques to define

nucleotide sequences and quantify RNA molecules in a

sample (Wang et al., 2009). Next-generation sequencing

(NGS) can faithfully process this data in hours to days,

making it an ideal method for RNA analysis among many

researchers (Kolodziejczyk et al., 2015). The use of this

technology in research and literature has exploded in

popularity.

50% MATCHING TEXT 85 WORDS

RNA sequencing is the use of high throughput next

generation sequencing technology to survey,

characterize, and quantify the transcriptome of a

genome[1]. In contrast to previous methods, RNA

sequencing utilizes sequencing by synthesis technology

to define the nucleotide sequences and quantify RNA

molecules in a sample[2]. Next generation sequencing

(NGS) can process this data in hours to days with high

fidelity, making it the preferred technique for RNA

analysis amongst many researchers[3]. The utilization of

this technology in research and literature has been

exploding in popularity.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

9/20 SUBMITTED TEXT 37 WORDS

there are many promising potential clinical applications

for RNA sequencing (Beane et al., 2011). Several

commercially available RNA sequencing kits are available

for each sample. Most follow similar processing steps but

ultimately depend on experimental considerations (

60% MATCHING TEXT 37 WORDS

There are many promising potential clinical applications

of RNA sequencing with recent discoveries using RNA

sequencing in many disease states[4,5]. Several

commercial RNA sequencing kits are available for any

sample. Most follow similar processing steps, but

ultimately depend on experimental considerations[6].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/



https://secure.urkund.com/view/135597243-199313-106170#/ 13/15

10/20 SUBMITTED TEXT 41 WORDS

mRNA, use poly (T) primers attached to beads or

magnets to bind mRNA and isolate these strands. For

small or non-coding RNA, gel electrophoresis is used to

separate these molecules. Complete RNA separation uses

a combination of these two techniques (

76% MATCHING TEXT 41 WORDS

mRNA isolation, poly(T) primers attached to beads or

magnets are used to bind mRNA and isolate these

strands. For small RNA molecules or non-coding RNA,

gel electrophoresis is used to isolate these molecules.

Total RNA isolation utilizes a combination of these two

techniques[7].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

11/20 SUBMITTED TEXT 36 WORDS

to the 5'end, 3'end, or both. When RNA is isolated, cDNA

is generated, amplified, and fragmented. Some kits

provide RNA sequencing directly without creating cDNA.

Although rRNA makes up a significant proportion of total

RNA

64% MATCHING TEXT 36 WORDS

to the 5’ end, 3’ end, or both. Once RNA is isolated, cDNA

is generated, amplified, and then fragmented. Some kits

provide direct RNA sequencing without the need to

create cDNA. rRNA can be removed since it makes up a

significant proportion of the total RNA

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

12/20 SUBMITTED TEXT 50 WORDS

little research interest. These samples are then sequenced

by next- generation massively parallel sequencing

technology that utilizes sequencing by synthesizing short

DNA strands complementary to cDNA. Once the reads

are generated, the software can be used to analyse the

sequence reads and match the reads to parts of the

genome.

48% MATCHING TEXT 50 WORDS

little research interest. These samples are then sequenced

through massive parallel next generation sequencing

technologies that utilize sequencing by synthesis of short

DNA strands complimentary to the cDNA. Once the reads

are produced, software is available to analyze the

sequence reads and correspond the reads to portions of

the genome.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

13/20 SUBMITTED TEXT 30 WORDS

techniques were available. Hybridization of cDNA probes

connected to microarrays enabled transcriptome analysis

but was limited by the need for extensive knowledge of

genomes, transcripts, alternative splicing, and exons.

62% MATCHING TEXT 30 WORDS

techniques were available before NGS RNA sequencing.

Hybridization of cDNA probes attached to microarrays

allowed for transcriptome analysis but was limited by the

requirement for extensive knowledge of the genome,

transcription products, alternative splicing, and exons.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/



https://secure.urkund.com/view/135597243-199313-106170#/ 14/15

14/20 SUBMITTED TEXT 16 WORDS

was Sanger sequencing, which used chain termination to

determine nucleotide sequences. In contrast to NGS,

86% MATCHING TEXT 16 WORDS

was Sanger sequencing, which utilized chain termination

methods to determine nucleotide sequences. In contrast

to NGS,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

15/20 SUBMITTED TEXT 18 WORDS

the creation of assays to test these small non-coding

RNAs with variant mRNAs at high throughput and

61% MATCHING TEXT 18 WORDS

the creation of an assay that survey these small non-

coding RNAs along with variant mRNAs with high

throughput and

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

16/20 SUBMITTED TEXT 16 WORDS

RNA expression, and thus gene expression, in a single

assay. The high throughput of RNA

80% MATCHING TEXT 16 WORDS

RNA expression and thus gene expression with a single

assay. Because of the high throughput nature of RNA

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

17/20 SUBMITTED TEXT 45 WORDS

prior genomic and transcriptional knowledge of the

sample. The resolution of RNA sequences also enables

the identification of single nucleotide polymorphisms,

novel post- transcriptional modifications, novel

alternative splicing patterns, and previously unidentified

non-coding RNA molecules. RNA sequencing provides

accurate quantification of mRNA expression compared

47% MATCHING TEXT 45 WORDS

prior genomic and transcriptional knowledge of the

sample is not needed, allowing analysis and discovery of

novel products. The resolution of RNA sequencing also

allows for the identification of single nucleotide variants,

novel post-transcriptional modification, novel alternative

splicing patterns, and non-coding RNA molecules that

have not been previously identified. RNA sequencing

provides an accurate quantification of mRNA expression

as compared

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/



https://secure.urkund.com/view/135597243-199313-106170#/ 15/15

18/20 SUBMITTED TEXT 76 WORDS

disease susceptibility, cancer etiology/progression, and

response to treatment. RNA sequences have been used

to analyze the etiology of various malignancies such as

psoriasis, lung cancer, and colon cancer. RNA sequencing

can identify differential expression of genes (DEGs),

mutant genes, fusion genes, and gene isoforms in

pathological conditions. RNA sequencing also has

potential for diagnostic and therapeutic applications.

Current research on colorectal disease using RNA

sequencing reveals new discoveries that may help

clinicians in the future

60% MATCHING TEXT 76 WORDS

disease susceptibility, cancer pathogenesis/progression,

and response to therapy. RNA Sequencing has been used

to analyze the pathogenesis of several malignancies such

melanoma, lung cancer, and colorectal cancer. RNA

sequencing can identify differential expression of genes

(DEG’s), mutated genes, fusion genes, and gene isoforms

in disease states. RNA sequencing has the potential for

diagnostic and therapeutic applications as well. Current

research in colorectal disease using RNA sequencing are

unlocking new discoveries that may help clinicians

treating patients with colorectal disease in the future.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

19/20 SUBMITTED TEXT 13 WORDS

total RNA, mRNA, and small RNA can be performed with

most kits.

83% MATCHING TEXT 13 WORDS

Total RNA, mRNA, and small RNA analysis can be done

with most kits.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413777/

20/20 SUBMITTED TEXT 16 WORDS

normalized read count data and performing statistical

analysis to discover quantitative changes in expression

levels

90% MATCHING TEXT 16 WORDS

Park_Jiae_33862914_BIO309.pdf (D138334149)




