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INTRODUCTION

The Central Dogma of Molecular Biology outlines the flow of information that is stored in
genes as DNA, transcribed into RNA, and finally translated into proteins (Crick, 1958;
Crick, 1970). Early gene expression studies relied on low-throughput methods such as
Northern blots and quantitative polymerase chain reaction (QPCR), but these were limited

to single transcript measurements.

The development of next-generation high-throughput sequencing (NGS) has revolutionized
transcriptomics by enabling RNA analysis with complementary DNA (cDNA) sequencing
(Wang et al., 2009). This method, called RNA-Sequencing, has clear advantages over
previous approaches and has revolutionized the understanding of the complex and dynamic
nature of the transcriptome. RNA-Sequencing provides a more detailed and quantitative
view of gene expression, alternative splicing, and allele-specific expression. Recent
advances in RNA-Sequencing workflows, from sample preparation to sequencing
platforms to bioinformatics data analysis, have enabled detailed transcriptome profiling and
the ability to elucidate a variety of physiological and pathological conditions. rice field.
The advent of high-throughput next-generation sequencing (NGS) technology has
revolutionized transcriptomics. This technological development solves many of the
challenges posed by the hybridization-based microarray and Sanger sequencing-based

approaches previously used to measure gene expression.

High-throughput sequence (HTS) data analysis is a complex multi-step process. Many
bioinformatics tools are available at most steps, and most tools require different parameters
to be set. Due to this complexity, HTS data analysis is particularly prone to reproducibility
and consistency issues. The high-throughput sequencer enables transcriptome inspection.
The transcriptome is a set of intracellular ribonucleic acids, including messenger
ribonucleic acid (MRNA), transfer ribonucleic acid (tRNA), ribosomal ribonucleic acid
(rRNA), small nucleus ribonucleic acid (snRNA), and non-coding ribonucleic acid
(ncRNA), others. These RNAs are expressed differentially depending on the tissue,
physiological state, or developmental stage (Gupta et al., 2021). Interpreting the complexity
of the transcriptome is an important goal for understanding the functional elements of the
genome, and therefore for understanding how the disease functions and signs of progress.
In this sense, the amount of non-coding DNA has recently been shown to increase with
biological complexity, increasing by 0.25% in the prokaryotic genome and 98.8% in the



human genome. EXxisting complexity associated with the discovery of small intrinsic
disturbances RNA (siRNA), long-scattered non-coding RNA (lincRNA), transcription
initiation RNA (tiRNA), microRNA (miRNA), transcription initiation site-related RNA
(TSSa-RNA), etc. is the transcription puzzles we need. Represents a piece of. Elucidate to

understand how the genome works.

Psoriasis is one of the most common immune inflammatory skin diseases, affecting
approximately 125 million people worldwide and more than 8 million in the United States
(Rachakonda et al., 2014). Psoriasis lesions can exhibit a variety of clinical manifestations,
including acanthosis (increased epidermal thickness), keratin proliferation, parakeratosis,
hypervascularization, and dense skin infiltration of immune cells (Gran et al.,2020).
Keratinocytes have central importance for inducing early pathogenic events and for
increasing psoriatic inflammation during the course of the disease (Albanesi et al., 2018,
Benhadou et al., 2019). In response to external and internal threat stimuli, keratinocytes
can be a source of innate immune mediators. These include various pro-inflammatory
cytokines and chemokines that mobilize cells important for innate and adaptive immune
responses (Li et al., 2014, Takagi et al., 2016). The IL-23 / IL-17 axis and TNF were first
identified in animal studies as the centre of pathogenesis for skin inflammation such as
psoriasis, and their role is now being demonstrated in humans. IL-36y is also strongly
associated with human psoriasis. IL-36y is produced by keratinocytes and can induce the
expression of the I1L-23 gene in keratinocytes (Goldstein et al., 2020). Therefore, it is
possible to drive a strengthening loop from IL-23 back to IL-17, IL-36y, and IL-23, thereby
maintaining the condition. All of these cytokines are elevated in psoriatic skin lesions, and
proper neutralization of TNF, IL-23 p19, or IL-17A has shown potential therapeutic effects
in psoriatic patients (Gran et al., 2020, Schon, 2019, Yamanaka et al., 2021). Although
these current treatments have proven to be effective, some patients do not respond or
become refractory over time, or the disease relapses when treatment is stopped. Therefore,
understanding the pathological mechanisms that can occur in psoriasis requires further
efforts, such as identifying new molecules that can be targeted alone or in combination with

existing therapies.

TNF and IL-17 are two cytokines that promote dysregulated keratinocyte activity, and their
targeting is very effective in psoriasis patients, but whether these molecules interact with
other inflammatory factors. Is not clear. Here, mice with a keratinocyte-specific deletion of
Fnl4 (Tnfrsfl2a), a receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), have



imiquimod-induced skin inflammation such as decreased epidermal hyperplasia and
decreased expression of the psoriasis signature gene. Indicates a decrease in. This
corresponded to the expression of Fn14 in the keratinocytes of human psoriasis lesions and
TWEAK being found in several sub-sets of skin cells. Transcriptomic studies in human
keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in
upregulating the expression of CXC chemokines, along with cytokines such as IL-23,
inflammation-associated proteins like S100A8/9 and SERPINB1/B9, all previously found
to be highly expressed in the lesional skin of psoriasis patients (Gupta et al., 2021)

Although these current treatments have proven efficacy, some patients fail to respond or
become resistant to therapy over time, or their disease comes back when treatment is
stopped. Therefore, continuing efforts to understand the pathological mechanisms that
might occur in psoriasis are needed, including identifying novel molecules that can be
targeted alone or combined with existing therapies. TNF-like weak inducer of apoptosis
(TWEAK, TNFSF12) can be expressed similar to TNF (TNFSF2) is a membrane-bound
molecule or soluble cytokine by a variety of cell types including structural and immune
cells (Chicheportiche et al., 1997, Bird et al., 2013). TWEAK binds to Fn14 (fibroblast
growth factor inducible 14, TNFRSF12A) and regulates many cellular activities such as
proliferation, migration, differentiation, apoptosis, and angiogenesis (Leng et al., 2011).
TWEAK is involved in the pathogenesis of several inflammatory and autoimmune diseases
(Burkly, 2014, Doerner et al., 2016). Recently, we have discovered that TWEAK-deficient
mice are protected from exhibiting severe imiquimod-induced skin inflammation with
some characteristics of psoriasis. Gene set enrichment analysis suggests an association
between Fnl4 transcripts and their signaling mediators in human psoriasis lesions (Leng et
al., 2011). The pathogenic activity of TWEAK was subsequently validated by another
group using Fnl4-deficient mice in the same experimental model (Doerner et al., 2015).
Other literature has found that soluble TWEAK is upregulated in the sera of psoriasis
patients and that expression of both TWEAK and Fn14 is detected at high levels in tissue
sections of psoriasis-damaged skin (Sidler et al., 2017, Peng et al., 2018). A new
therapeutic approach to reduce skin lesions in psoriasis. The TWEAK primary cell target
in the skin is unclear. Subcutaneous injection of recombinant TWEAK bolus into mice was
found to result in skin inflammation and some histological features reminiscent of human
psoriasis. It was associated with the production of a series of chemokines that attract the
innate and adaptive immune cells characteristic of psoriasis (Sidler et al., 2017). Many of

these chemokines are products of keratinocytes, and Fnl4 is expressed in keratinocytes
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(Sidler et al., 2017), suggesting that this cell type may be central to the action of TWEAK.
Before considering clinical treatment for this pathway, how TWEAK in the skin, especially
on keratinocytes, and its relationship to other pathogenic molecules such as IL-17 and TNF
that also have receptors on keratinocytes

In this study, we investigated if TWEAK signalling specifically in keratinocytes is required

to develop psoriasis-like skin lesions after imiquimod treatment using Fnl4-conditional
knockout mice, and also performed RNA-sequencing analysis in human epidermal
keratinocytes to determine how TWEAK alone or in combination with IL-17 and TNF
controls expression of a variety of gene sets found to be upregulated in human psoriasis.
Our data demonstrate that Fn14 signalling in keratinocytes is crucial for the development
of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish
substantial similarities in the genes induced in keratinocytes by TWEAK, IL-17, and TNF,
and notably, we found strong synergistic activities of these cytokines acting together on a
number of genes associated with psoriasis. Correspondingly, a similar effect of blocking
TWEAK therapeutically was observed in reducing skin lesions in mice compared to
blocking either TNF or IL-17A, and no greater effect was seen with combination
treatments. These results suggest that TWEAK might be as good a target to counter the
keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as
observed when IL-17 and TNF are neutralized (Wang et al., 2021, Bilgic et al., 2016)

The main goal of many gene expression experiments is to detect transcripts that exhibit
differential expression under a variety of conditions. Extensive statistical approaches have
been developed to test differential expression using microarray data, and the continuous
probe intensity of the entire replication can be approximated by a normal distribution
(Chandran and Raychaudhuri, 2010, Cui and Churchill, 2003, Smyth, 2004). While these
approaches can, in principle, be applied to RNA-Sequencing data, other statistical models
of discrete read counts that do not fit the normal distribution should be considered. Early
RNA-Sequencing studies showed that the distribution of read counts throughout replication
follows a Poisson distribution. This formed the basis for modelling RNA-Sequencing count
data (Grant et al., 2005). However, further studies have shown that biological variability is
not captured by Poisson's assumptions and leads to high false positive rates due to
underestimation of sampling errors (Marioni et al., 2008, Anders and Huber, 2010,

Lanhmead et al., 2010). Therefore, a negative binomial distribution model that describes



overdispersion or extra-Poisson variability has been shown to best fit the distribution of

read counts across biological replication.



REVIEW OF LITERATURE

Psoriasis Vulgaris is a chronic disease that affects 1-3% of the population (Rohinson and
Oshlack, 2010). In addition to the possible involvement of skin and joints, recent evidence
suggests a link between psoriasis and other systemic disorders (Gelfand et al., 2006). The
molecular properties of psoriasis skin samples have led to a better understanding of the
etiology of the disease and helped identify therapeutic targets (Lebwohi, 2003). Psoriasis
is one of the most common chronic inflammatory skin diseases, affecting 1-3% of the adult
population worldwide (Lebwohi, 2003). It is characterized by marked overgrowth and
inadequate end differentiation of keratinocytes. In addition, complex interactions between
different cell types and various cytokines are known to contribute to the development of
psoriasis. The etiology is also based on complex interactions between genetic
predisposition, important histocompatibility alleles, and various environmental triggers
(Lowes et al., 2007). However, from a molecular perspective, the mechanisms responsible
for the interaction of keratinocytes with the inflammatory cells that infiltrate the epidermis
are not yet fully understood. Analysis of the molecular background of psoriasis describes
many disease-related genes and proteins with aberrant expression patterns (Nomura et al.,
2003), but little is known about the regulatory pathways responsible for this aberrant
expression. Recent evidence suggests that non-coding RNAs such as microRNAs
(miRNAs) and long noncoding RNAs (IncRNAs) contribute to the pathogenesis of
psoriasis by affecting protein expression and function in both keratinocytes and
inflammatory cells. It suggests that it may be (Sonkoly et al., 2007, Zibert et al., 2010, Ahn
et al., 2016, Gupta et al., 2016, Tsoi et al., 2015). RNA Sewing Fundamentals: RNA
Sequencing is the use of next-generation high-throughput sequencing technology to study,
characterize, and quantify genomic transcriptomes (Morin et al., 2008). Unlike previous
methods, RNA sequencing uses synthetic techniques to define nucleotide sequences and
quantify RNA molecules in a sample (Wang et al., 2009). Next-generation sequencing
(NGS) can faithfully process this data in hours to days, making it an ideal method for RNA
analysis among many researchers (Kolodziejczyk et al., 2015). The use of this technology
in research and literature has exploded in popularity. With recent discoveries in the use of
RNA sequencing in many pathologies, there are many promising potential clinical
applications for RNA sequencing (Beane et al., 2011). Several commercially available

RNA sequencing kits are available for each sample. Most follow similar processing steps



but ultimately depend on experimental considerations (Chu and Corey, 2012). Analysis of
total RNA, mRNA, and small RNA can be performed with most Kits. To isolate MRNA,
use poly (T) primers attached to beads or magnets to bind mMRNA and isolate these strands.
For small or non-coding RNA, gel electrophoresis is used to separate these molecules.
Complete RNA separation uses a combination of these two techniques (Tuch et al., 2010).
Then ligate the adapter to the 5'end, 3'end, or both. When RNA is isolated, cDNA is
generated, amplified, and fragmented. Some kits provide RNA sequencing directly without
creating cDNA. Although rRNA makes up a significant proportion of total RNA and can
be removed, it has little research interest. These samples are then sequenced by next-
generation massively parallel sequencing technology that utilizes sequencing by
synthesizing short DNA strands complementary to cDNA. Once the reads are generated,
the software can be used to analyse the sequence reads and match the reads to parts of the
genome. You can also create a de novo transcriptome map by mapping gene fragments with
sequencing analysis software. The total number of reads for each gene product can be used

to quantify proportional gene expression (Han et al., 2015).

The use of RNA-Sequencing has recently increased due to advances beyond previous
attempts in transcriptome research. Prior to NGS RNA sequencing, two well-known
techniques were available. Hybridization of cDNA probes connected to microarrays
enabled transcriptome analysis but was limited by the need for extensive knowledge of
genomes, transcripts, alternative splicing, and exons. The background noise produced by
cross-hybridization also limited resolution during attempts to quantify gene expression.
Another technique was Sanger sequencing, which used chain termination to determine
nucleotide sequences. In contrast to NGS, the Sanger method was more expensive and time-
consuming and could only analyze a limited portion of the transcript (Morin et al., 2008,
Wang et al., 2009, Burroughs et al., 2013). Discovery of both non-coding RNAs such as.
B. miRNAs (miRNASs) have required the creation of assays to test these small non-coding
RNAs with variant mRNAs at high throughput and high resolution, as well as the discovery
of post-transcriptional mRNA expression regulation (Klerk and Hoen, 2015). RNA-
Sequencing techniques allow researchers to perform both of these tasks and quantify RNA
expression, and thus gene expression, in a single assay. The high throughput of RNA
sequences allows the transcriptome to be analyzed and efficiently compared across
different environmental factors such as time, different tissue samples, pathological

conditions, and pharmacological interventions. The potential for de novo transcriptome



synthesis allows the analysis and discovery of new products without the need for prior
genomic and transcriptional knowledge of the sample. The resolution of RNA sequences
also enables the identification of single nucleotide polymorphisms, novel post-
transcriptional modifications, novel alternative splicing patterns, and previously
unidentified non-coding RNA molecules. RNA sequencing provides accurate
quantification of mMRNA expression compared to real-time PCR experiments (Scapato et
al., 2015, de Klerk et al., 2014, Derks et al., 2015). RNA sequences can be used to study
the molecular basis of disease susceptibility, cancer etiology/progression, and response to
treatment. RNA sequences have been used to analyze the etiology of various malignancies
such as psoriasis, lung cancer, and colon cancer. RNA sequencing can identify differential
expression of genes (DEGSs), mutant genes, fusion genes, and gene isoforms in pathological
conditions. RNA sequencing also has potential for diagnostic and therapeutic applications.
Current research on colorectal disease using RNA sequencing reveals new discoveries that

may help clinicians in the future management of patients with colorectal disease.

Transcriptome analysis is an important tool for characterizing and understanding the
molecular basis of phenotypic changes in biology, including disease. In recent decades,
microarrays have been the most important and widely used approach to such analysis, but
recently high-throughput cDNA sequencing (RNA-sequencing) has emerged as a powerful
alternative (Mortazavi et al., 2008). Many applications have already been found (Chen et
al., 2011). RNA-sequencing uses next-generation sequencing (NGS) methods to sequence
cDNA from RNA samples, producing millions of short reads. These reads are then typically
mapped to the reference genome, and the number of reads mapped within the genomic traits
of interest (such as genes or exons) is used as a measure of the frequency of the traits of the
analyzed sample (Oshlack et al., 2010).

Perhaps the most common use of transcriptome profiling is to search for differentially
expressed (DE) genes. H. Look for genes that show differences in expression levels
between conditions, or genes that are associated with a particular predictor or response.
RNA-sequencing offers several advantages over microarrays for differential expression
analysis. B. Ability to detect and quantify previously unknown transcripts and isoforms
with increased dynamic range and reduced background levels (Agrawal et al., 2010,
Bradford et al., 2010, Bullard et al., 2010). However, analysing RNA-sequencing data can

be difficult. Some of these issues are unique to next-generation sequencing methods. For



example, differences in nucleotide composition between genomic regions mean that
reading ranges may not be uniform throughout the genome. In addition, more reads are
mapped to longer genes than shorter genes with the same expression level. In differential
expression analysis, where genes are individually tested for differences in expression
between conditions, biases within the sample are usually ignored as they are expected to

affect all samples in a similar manner (Agrawal et al., 2010).

RNA-sequencing experiments show other types of heterogeneity between samples. First,
the depth of the sequence or the library size (total number of reads allocated) usually varies
from sample to sample. That is, the counts observed between the samples cannot be
compared directly. In fact, even in the absence of true differential expression, if one sample
is sequenced twice as deep as another, then all genes in the first sample receive twice as
many as the second sample. It is expected that we would like to avoid such confusion. The
effect of true differential expression. The easiest way to approach different library sizes is
to simply rescale or resample the read counts to get the same library size for all samples.
However, such normalization is generally not sufficient. This is because RNA-Sequencing
counts essentially represent the relative abundance of genes, even if the libraries are
actually the same size. Some highly expressed genes can make up a very large proportion
of the reads sequenced in the experiment, so few reads need to be assigned to the remaining
genes (Bullard et al., 2010). Therefore, the presence of a small number of highly expressed
genes suppresses the count of all other genes, and the latter group of genes are mis
expressed compared to samples with more evenly distributed reads. It is misunderstood that
it can appear low and can lead to many genes. More complex normalization schemes have
been proposed to address this difficulty and allow counts to be compared between samples
(Bullard et al., 2010, Anders and Huber, 2010, Robinson and Oshlack, 2010). In addition
to library size, these methods also include estimating sample-specific normalization
coefficients. It is used to rescale the observed count. Using these normalization methods,
the sum of the normalized counts across all genes are therefore not necessarily equal
between samples (as it would be if only the library sizes were used for normalization), but
the goal is instead to make the normalized counts for non-differentially expressed genes
similar between the samples. In this study, we use the TMM normalization (trimmed mean
of M-values (Robinson and Oshlack, 2010)) and the normalization provided in the DESeq
package (Anders and Huber, 2010). A comprehensive evaluation of seven different
normalization methods was recently performed (Dillies et al., 2012), in which these two



methods were shown to perform similarly, and they were also the only ones providing
satisfactory results with respect to all metrics used in that evaluation. Still, it is important
to keep in mind that even these methods are based on an assumption that most genes are
equivalently expressed in the samples, and that the differentially expressed genes are

divided more or less equally between up- and downregulation (Dillies et al., 2012).

Microarrays have been used routinely for differential expression analysis for over a
decade, and there are well-established methods available for this purpose (such as limma
(Smyth, 2004)). These methods cannot be easily migrated to the analysis of RNA-
sequencing data (Robinson and Smyth, 2008).

It is different from the data obtained from the microarray. Intensities recorded from
microarrays are treated as continuous measurements and are generally assumed to follow a
lognormal distribution, but counts from RNA-sequencing experiments are non-negative
integers and therefore essentially follow a discrete distribution. Poisson distribution and
negative binomial distribution (NB) are the two most commonly used models in the method
explicitly developed for differential expression analysis of this type of count data (Anders
and Huber, 2010, Robinson and Symth, 2008, Auer and Doerge, 2011, Hardcastle and
Kelly, 2010, Di et al., 2011). Other distributions such as the beta-binomial distribution
(Zhou et al., 2011) have also been proposed. The Poisson distribution has the advantage of
simplicity, with only one parameter, but limits the variance of the modelled variables to the
mean. The negative binomial distribution has two parameters that encode the mean and
variance, so you can model the more general mean and variance relationship. For RNA-
sequencing, the Poisson distribution has been suggested to be suitable for the analysis of
engineering replication, but with high variability between biological replications, it is
accompanied by overdispersion, such as a negative binomial distribution. Distribution is
required (Bullard et al., 2010, Marioni et al., 2008). Some software packages represent
RNA-sequencing data in converted quantities instead of using integers directly. Long
transcripts are expected to receive more reads than short transcripts with the same
expression level, so the goal of such a conversion is to normalize the count in relation to
various library sizes and transcript lengths. Is to do. Other normalization strategies can be
used to address other biases, such as biases due to variable GC content in reads. After such
a conversion, the resulting value will no longer be an integer count. That is, you should not

plug in numerical-based methods for differential expression analysis. Therefore, of the
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methods evaluated in this study, only nonparametric methods are suitable for RPKM
values. Other software, such as Cufflinks / Cuffediff (Trapnell et al., 2010), provides an
integrated analytical pipeline from aligned reads to derivative results by inference based on
FPKM values.

The field of differential expression analysis of RNA-sequencing data is still in its infancy,
and new methods are constantly being introduced. To date, there has been no general
consensus on which method works best in a particular situation, and few detailed
comparisons between the proposed methods have been published. In a recent publication
(Kyam et al., 2012), four parametric methods were compared in terms of their ability to
distinguish between truly differentially expressed (DE) and truly non-DE genes under
different simulation conditions. The authors also compared duplications between sets of
DE genes found differently in practice data set. Another recent study (Robles et al., 2012)
evaluated the effect of increased sequence depth on the ability to detect the DE gene and
contrasted this with the benefits of increased sample size, the latter demonstrating to be
significantly greater. In (Nookaew et al., 2012), the authors published a case study on
Saccharomyces cerevisiae, comparing the results of several differential expression analysis
methods of RNA-sequencing with each other, comparing them with the results of

microarrays, and generally between different methods.

In this study, we investigated if TWEAK signalling specifically in keratinocytes is required
to develop psoriasis-like skin lesions after imiquimod treatment using Fnl4-conditional
knockout mice, and also performed RNA-sequencing analysis in human epidermal
keratinocytes to determine how TWEAK alone or in combination with IL-17 and TNF
controls expression of a variety of gene sets found to be upregulated in human psoriasis.
Our data demonstrates that Fn14 signalling in keratinocytes is crucial for the development
of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish
substantial similarities in the genes induced in keratinocytes by TWEAK, IL-17, and TNF,
and notably we found strong synergistic activities of these cytokines acting together on a
number of genes associated with psoriasis. Correspondingly, a similar effect of blocking
TWEAK therapeutically was observed in reducing skin lesions in mice compared to
blocking either TNF or IL-17A, and no greater effect was seen with combination

treatments. These results suggest that TWEAK might be as good a target to counter the
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keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as
observed when IL-17 and TNF are neutralized (Gupta et al., 2021).
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MATERIALS AND METHODOLOGY

Workflow is the series of activities that are necessary to complete a task. Each step in a
workflow has a specific step before it and a specific step after it. Workflow for RNA

Sequencing analysis is show in figure 1.
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Fig 1: Workflow for RNA-Seq Analysis

The sample sequences were downloaded from the NCBI GEO Dataset (Gupta et al., 2021).
10samples of paired-end sequencing were selected, out of which 6 were TWEAK
stimulated and 4 were TNF stimulated, the metadata of the samples was downloaded on the
workstation having an Intel Xeon 3.20GHz x20 processor and 150GB of RAM, 10 cores.

The list of samples is shown in figure 2.

13



Qe s

= NCBI

SRA Run Selector

Lagin tabiH
Accession  PRINAT18582 Q  seach
BisPraject PRINA7ISE2
Cansent RuBLIC
sy Type BNAScq
Agspatien 00
cell tine nHEK
Celltype Human epidermal keratinocytes from nesnates (nHEK|

Conter Name

oo

oSt rasTasea
= S PO PR P p—— P

- 3 nssco 72ems | vt o Aot

o

o s v [N o A e o D oty
I Qo

®  -m + Blosomple < Bases Bytes < Exparin " ceoawesion % ssmoloName source_name treatment

TRET wic s s st casan P — T ——

3 L76G HOMM 5 GEMI220263 GSM3I220263 ‘Skin Keratinocyte TWEAK stimulated TWEAK (1 fmill stimulated

TRE s cosanaue F R — -

s o s s Gz P Sre—

v e 4 183G ITRTIMb  SAX 104774 GSM3220267 ‘Skin Keratinacyte_TNF st 0 nefmi) stimu ated

Fig 2: Metadata of the sample on NCBI

Quality Control by Fast QC

Then, the data were analyzed for quality control and trimming using Fast QC,
which provides a simple way to do some quality control checks on raw sequence data
coming from high throughput sequencing pipelines, and the outcome of the Fast QC
analysis shows whether the trimming is needed or not. Comparing the results from
standards suggests, that trimming is not needed in the data obtained, the result of Fast QC
in little noise.

iIs also shown the figures 3. The data was good with

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 3 (Figure 3a to figure 3t) shows the quality control by using Fast QC of the following

samples.
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Building the reference index by RStudio

The Human reference genome of the human was downloaded for building a reference index
for alignment and mapping of the sequence from NCBI (National Center for Biotechnology
Information), the reference index was built using RStudio, using the Rsubread package and
the base name was given as “chrl _mm10”, as shown in Figure 4. Genome indexing can be
described in a similar way to book indexing. If you want to know on which page a particular
word appears or where a chapter begins, it's much more efficient / faster to look it up in a
ready-made index than to look it up until you find each page in the book. The same is true
for linear. Indexes allow aligners to narrow down potential origins of query sequences in

the genome, saving both time and memory.

L
o
glrw

dit  code wiew Plots Session  Builld  Debug  Erofile  Tools  Help

Fig 4: Reference index was built using Rsubread in RStudio

Alignment using Rsubread

Then, the alignment was done using pair-end sequencing alignment, by RStudio and by
taking two FASTA files as input, the output files are in BAM format using the reference
index, Rsubread can be used for many processes like- Alignment, quantification, and
analysis of RNA sequencing data (including both bulk RNA-seq and scRNA-seq) and DNA
sequencing data (including ATAC-seq, ChIP-seq, WGS, WES, etc). Includes functionality
for reading mapping, read counting, SNP calling, structural variant detection, and gene
fusion discovery. Can be applied to all major sequencing technologies and to both short
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and long sequence reads (Liao et al., 2019) The following results were obtained after

alignment; the list of files is shown in figure 5.

Samples NumTotal WumMapped PropMapped

1  /homefrakesh/Downloads/SRR14108901. fastg.gz.subread.BAM 19521208 19371471 0.992330
2  Sfhomefrakesh/Downloads/SRR14108902. fastg.gz.subread.BAM 19878351 18926496 @.992457
3  Sfhomefrakesh/Downloads/SRR14108903. fastg.gz.subread.BAM 17613371 17495671 0.993318
4  S[home/frakesh/Downloads/SRR14108904. fastqg.gz.subread.BAM 17309868 17193851 0.993344
5 J[homefrakesh/Downloads/SRR141089685. fastg.gz.subread.BAM 21321325 21188041 0.99374%9
6 [homefrakesh/Downloads/SRR14108906. fastqg.az.subread.BAM 21711353 21573056 0.993630
7 [homefrakesh/Downloads/SRR141089087. fastg.qz.subread.BAM 18417678 18222723  0.989415
g J[home/rakesh/Downloads/SRR14108908. fastg.gz.subread.BAM 18761337 18561488 0.989348
9  Jhomefrakesh/Downloads/SRR14108909, fastg.gz.subread.BAM 19914848 19699492 0.989226
18 [home/rakesh/Downloads/SRR14108910. fastg.gz.subread.BAM 20388686 20167279 0.989141

Fig 5: The list of BAM files after alignment

Feature Count using Rsubread in terminal

After the alignment, we got one BAM file instead of two FASTA files and then the feature
count was done in order to get the count table, it was done by using Rsubread in the Ubuntu
terminal and the output was in the form of the count.out file. The full analysis is shown in
the figure 6.

Process BAM file SRR14108903_1.fastq.gz.subread.BAM...
WARNING:
Total alignments :
Successfully assigned alignments :
Running time :

Process BAM file SRR14108904_1.fastq.gz.subread.BAM...
WARNING:
Total alignments :
Successfully assigned alignments :
Running time :

Process BAM file SRR14168905_1.fastq.gz.subread.BAM...
WARNING:
Total alignments :
Successfully assigned alignments :
Running time :

Process BAM file SRR14108906_1.fastq.gz.subread.BAM. ..
WARNING:
Total alignments :
. successfully assigned alignments :
output file : Running time :
summary :
Annotation : Process BAM file SRR14108907_1.fastq.gz.subread.BAM...
Dir for temp files : WARNING:
Total alignments :
Threads : Successfully assigned alignments :
Level : Running time :
Paired-end :
Multimapping reads : Process BAM file SRR14108908_1.fastq.gz.subread.BAM...
Multi-overlapping reads : WARNING:
Min overlapping bases : Total alignments :
Successfully assigned alignments :
Running time :

Process BAM file SRR14108909_1.fastq.gz.subread.BAM...
WARNING:
Load annotation file annotation. Total alignments :
Features : Successfully assigned alignments :
Meta-features : Running time :
Chromosomes/contigs :
Process BAM file SRR14108910_1.fastq.gz.subread.BAM...
Process BAM file SRR14108901 1.fastq.gz.subread.BAM... WARNING:
WARNINC:_ Total alignments :
Total alignments : Successfully assigned alignments :
Successfully assigned alignments : Running time :
Running time :
Write the final count table.
Process BAM file SRR14108902_1.fastq.gz.subread.BAM... Write the read assignment summary.
WARNING:
Total alignnments : summary of counting results can be found in file "counts
Successfully assigned alignments :
Running time :

Fig 6: Feature Count using Rsubread
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The count data are structured as a table, which reports the number of sequence fragments
assigned to each gene for each sample, the count data were further filtered for null, NA,
and negative values in the table, as these values show errors in further steps. The count data
output for 10 samples were 47895, but after filtering the negative values, NULL values,
NA values and zero values, only 7322 reading were left for further analysis of Differentially
Expressed Genes. Feature Count is a general-purpose read summarization function, which
assigns to the genomic features (or meta-features) the mapped reads that were generated
from genomic DNA and RNA sequencing.

(https://www.rdocumentation.org/packages/Rsubread/versions/1.22.2/topics/featureCount

)

RNA-seq reads may be aligned to the transcriptome rather than the genome. In this case,
there can be hundreds of thousands of transcripts, and each transcript becomes a reference
sequence. featureCounts supports thread-specific read counts when thread-specific
information is provided (Yang et al., 2014). The output table of the first 20 output of the
count table is shown in table 1.

Table 1: Table of first 20 output after feature count of the sequence data

Geneid 1 2 3 4 3 6 7 8 9 10

AAGALT 552 569 462 509 629 639 527 542 398 585
AAMDAT 103 99 72 102 117 102 36 43 42 41

AANMDC 116 110 120 86 115 118 107 88 113 111
AAMRZ 728 776 664 613 734 803 871 974 831 887
ANMRSZ 476 331 323 431 316 363 333 321 331 332
AASDH 261 243 248 210 277 313 138 150 152 181
AATBC 39 60 31 37 k] 32 63 105 63 63

AATF 663 398 602 606 744 833 339 341 393 638
ABALON 65 62 64 33 68 71 64 a0 47 37

ABAT 237 304 230 262 251 343 144 173 206 185
ABCAL1P 104 92 69 93 112 113 86 123 116 132
ABCAZ 616 633 323 603 637 637 198 136 323 336
ABCAS 838 822 739 766 243 240 952 237 882 961
ABCB1O 672 636 620 393 637 718 324 405 478 482
ABCBG 707 768 629 373 732 818 2438 236 248 276
ABCB7Y 369 435 430 4335 606 627 305 434 483 02
ABCBS 272 300 283 289 310 373 99 28 134 126
ABCC2 84 73 63 36 a0 81 32 36 37 29

ABCC4A 311 481 415 421 317 489 372 322 360 383
ABCDL 134 211 178 179 211 234 274 232 260 310

ADCTA =on =aa TS e~ 575 = at cAg =72 S -1
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Differentially Expressed Genes Analysis

Differential expression analysis means taking normalized read count data and performing
statistical analysis to discover quantitative changes in expression levels between

experimental groups.

The differentially Expressed genes analysis was done in RStudio using package DESeq2,
the following steps were followed, firstly the tables are converted to matrix, then the
conditions are assigned to the data, the data was then loaded to DESeq pipeline and different
types og plots and graphs were obtained according to the need of the analysis, like-

dispersion plot, heatmap, scatter plot, histogram, MA plot, volcano plot, etc.
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RESULT AND DISCUSSION

Volcano Plot

Another common and interesting comparison between the two treatment conditions is the
adjusted P-value and log fold change. This figure 7 is called a volcano plot because it
resembles an exploding volcano, with clusters of data points near the origin and the fanning
effect moving away from its central location. The volcanic plot shows the statistical
significance of the difference to the magnitude of the difference between the individual
genes compared. Usually indicated by a fold change of negative base 10log or base 2log,
respectively. The P-value undergoes a negative transformation, so the higher the data point
along the y-axis, the smaller the P-value. VVolcano graphs are generally considered to be
statistically differentially expressed based on the adjusted P value of the difference between
treatments, including some threshold indicators of the adjusted P value. Indicates the gene
to be used. Changes in log multiples along the x-axis show a clearer difference in extrema,
and data points close to 0 represent genes with similar or same mean expression levels. In
the case of volcanic areas, as the name implies, it is expected to be quite widespread. The
wide dispersal indicates two treatment groups with significant differences in gene
expression. It is quite rare for a volcano plot to have almost or all data points gathered near

the origin.

Volcano Plot
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Fig 7: Volcano Plot generated from DESeq2 Dataset
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MA Plot

The MA chart can only compare two treatment conditions at a time. However, all
pairwise comparisons in this figure 8 can be combined in a matrix format to provide
all possible combinations at once. Each cell represents a particular comparison,
shown cell by cell or at the intersection of rows and columns. This visualization
allows the user to view all pairwise fold change comparisons and average
manifestations at once. In addition, this method allows direct comparison of
pairwise treatment comparisons. It provides an approach for determining which
treatment comparisons are more or less similar in terms of both fold change changes
and mean expression levels. Like other matrix options, this process allows the user

to visualize all treatment-based comparisons in one diagram.

MA Plot
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Fig 8: MA Plot generated from DESeq?2 dataset
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Heatmap

By comparison, you can also use a heatmap based on the number of DEG’s to summarize
the same information. Using a color spectrum based on the magnitude of the DEG count,
the DEG heatmap can provide an easy way to read and interpret. For a DEG heatmap, each
cell represents the number of DSNs in that particular intersecting row and column.
Arrangements along the selected color spectrum, provide a visual indication of magnitude.
Treatment group. The DEG heatmap has obvious drawbacks in terms of redundancy. For
the three factor levels, this figure 9 is a good representation of the data. However, increasing
the number of factor levels will generate redundant cells. Cells are usually left blank to
avoid misleading the user. This method is counterproductive because it requires more effort
to interpret the information efficiently. As the number of factor levels increases, the
usefulness of this type of visualization diminishes and is recommended only for some factor
levels. According to the heatmap, the white color shows the upregulated genes while the

black color shows the downregulated genes.
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Dispersion Plot

Another relatively simple visualization method associated with Tier 1 is to compare
expression levels between two samples or two treatment groups. This comparison is
typically visualized using a scatter plot. Each data point represents a single gene and its
placement indicates the average expression level for each of the two treatments. A scatter
plot implemented in this way can be used to make a larger comparison between the two
treatment groups. The axes represent the expression levels for each category, so the data
points along the diagonal show similar expression levels from both groups. Data points
above or below the diagonal indicate higher or lower expression levels of factor levels on
the y-axis compared to factor levels on the x-axis, respectively. Considering this scatter
plot as a whole, clustering of all data points along the diagonal shows two samples or
treatments with very similar expression patterns across all genes, with the spread of data
points from the diagonal. Larger values indicate dissimilar expression levels. Hence, the
figure 10 shows that the gene is negatively regulated.

Dispersion plot
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Fig 10: Dispersion Plot generated from DESeq?2 dataset
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PCA Biplot

The PCA Biplot also known as Principal Components Analysis Biplot is a two-dimensional
chart that represents the relationship between the rows and columns. Hence, in this case the
PCA Biplot is the representation of the relationship of the rows and columns of the count

data in DEG as shown in figure 11.

PCA Biplot

1.5

1.0

05

PC1 (0.7%)

-1.0

-60 -40 -20 0 20

PC1 (97.5%)

Fig 11: PCA Biplot generated from DESeq2 dataset
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The table 2 shows the Gene id, base mean, log 2 fold change and p value of the samples,
after differentially expressed gene analysis, it shows the first 20 output of the following
table.

Table 2: First 20 output of the fold change and p value of the samples

e 8 o
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CONCLUSION

In this study, I have learned to analysed the RNA Seq data of skin disease psoriasis by using
R. In this study, | have learned to check the quality of the data using Fast QC, then reference
index was build for human reference genome, followed by alignment was done for pair end
sequence using Rsubread package. Feature count was done to get the count data of the
sample sequence. Then, differentially expressed gene analysis was done with the help of
count data. Results were generated in the form of volcano plot, MA plot, heatmap,
dispersion plot and PCA Biplot.

Our results suggest negative correlation through the expression levels of psoriasis. It
highlights that the samples regulated by TWEAK and TNF inhibit the expression of
psoriasis genes. This indicates the use of TWEAK and TNF as a possible treatment for

psoriasis.

DEG is often used to determine genotype differences between two or more cellular states
to support studies based on specific hypotheses. Interpretation of this information can
greatly benefit from the graphic display of the result file. Tier 1 functions provide relatively
basic levels of information, including read count distributions, pairwise levels, and those
used to visualize DEG counts, while Tier 2 functions provide average level, use additional
metrics such as multiple changes, P-values-provide more detailed and informative
visualizations. Box plots, violin plots, dot plots, and read count histograms provide insight
into the distribution of read counts for each sample or processing group. Scatter plots allow
users to visualize the overall similarity of expression levels by showing the expression
levels of each gene in the two selected treatments or samples. The DEG histogram and
heatmap directly represent the number of DEGs in each comparison. MA and volcano
charts are useful for showing relative expression levels, changes in log multiples, and
adjusted P-values. Although not applicable to all users, 4-way plots can provide a higher

level of detail by including a third treatment group or sample as a relative or control group.
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Introduction The Central Dogma of Molecular Biology outlines the flow of information that is stored in genes as DNA,
transcribed into RNA, and finally translated into proteins (Crick, 1958; Crick, 1970).

Early
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gene expression studies relied on low-throughput methods such as Northern blots and quantitative polymerase chain
reaction (QPCR), but these were limited to single

transcript measurements.
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The development of next-generation high-throughput sequencing (NGS) has revolutionized transcriptomics by
enabling RNA analysis with complementary DNA (cDNA) sequencing (Wang et al., 2009). This method, called RNA-
Sequencing, has clear advantages over previous approaches and has revolutionized the understanding of the complex
and dynamic nature of the transcriptome. RNA-Sequencing provides a more detailed and quantitative view of gene
expression, alternative splicing, and allele-specific expression. Recent advances in RNA-Sequencing workflows, from
sample preparation to sequencing platforms to bioinformatics data analysis, have enabled detailed transcriptome
profiling and the ability to elucidate

a variety of physiological and pathological conditions. rice field.
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The advent of high-throughput next-generation sequencing (NGS) technology has revolutionized transcriptomics. This
technological development solves many

of the challenges posed by the hybridization-based microarray and Sanger sequencing-based approaches previously
used to measure gene expression. High-throughput sequence (HTS) data analysis is a complex multi-step process. Many
bioinformatics tools are available at most steps, and most tools require different parameters to be set. Due to this
complexity, HTS data analysis is particularly prone to reproducibility and consistency issues. The high-throughput
sequencer enables transcriptome inspection. The transcriptome is a set of intracellular ribonucleic acids, including
messenger ribonucleic acid (mMRNA), transfer ribonucleic acid (tRNA), ribosomal ribonucleic acid (rRNA), small nucleus
ribonucleic acid (snRNA), and non-coding ribonucleic acid (hcRNA), others. These RNAs are expressed differentially
depending on the tissue, physiological state, or developmental stage (Gupta et al., 2021). Interpreting the complexity of
the transcriptome is an important goal for understanding the functional elements of the genome, and therefore for
understanding how the disease functions and signs of progress. In this sense, the amount of non-coding DNA has
recently been shown to increase with biological complexity, increasing by 0.25% in the prokaryotic genome and 98.8% in
the human genome. Existing complexity associated with the discovery of small intrinsic

disturbances RNA (siRNA), long-scattered non-coding RNA (lincRNA), transcription initiation RNA (tiRNA), microRNA
(miRNA), transcription initiation site-related RNA (TSSa-RNA), etc. is the transcription puzzles we need. Represents a
piece of. Elucidate to understand how the genome works. Psoriasis is one of the most common immune inflammatory
skin diseases, affecting approximately 125 million people worldwide and more than 8 million in the United States
(Rachakonda et al., 2014). Psoriasis lesions can exhibit a variety of clinical manifestations, including acanthosis (increased
epidermal thickness), keratin proliferation, parakeratosis, hypervascularization, and dense skin infiltration of immune cells
(Gran et al.,2020). Keratinocytes have central importance for inducing early pathogenic events and for increasing
psoriatic inflammation during the course of the disease (Albanesi et al., 2018, Benhadou et al., 2019). In response to
external and internal threat stimuli, keratinocytes can be a source of innate immune mediators. These include various
pro-inflammatory cytokines and chemokines that mobilize cells important for innate and adaptive immune responses (Li
et al,, 2014, Takagi et al.,, 2016). The IL-23 / IL-17 axis and TNF were first identified in animal studies as the centre of
pathogenesis for skin inflammation such as psoriasis, and their role is now being demonstrated in humans. IL-36y is also
strongly associated with human psoriasis. IL-36y is produced by keratinocytes and can induce the expression of the [L-23
gene in keratinocytes (Goldstein et al., 2020). Therefore, it is possible to drive a strengthening loop from IL-23 back to IL-
17, IL-36y, and IL-23, thereby maintaining the condition. All of these cytokines are elevated in psoriatic skin lesions, and
proper neutralization of TNF, IL-23 p19, or IL-17A has shown potential therapeutic effects in psoriatic patients (Gran et al.,
2020, Schon, 2019, Yamanaka et al., 2021). Although these current treatments have proven to be effective, some patients
do not respond or become refractory over time, or the disease relapses when treatment is stopped. Therefore,
understanding the pathological mechanisms that can occur in psoriasis requires further efforts, such as identifying new
molecules that can be targeted alone or in combination with existing therapies. TNF and IL-17 are two cytokines that
promote dysregulated keratinocyte activity, and their targeting is very effective in psoriasis patients, but whether these
molecules interact with other inflammatory factors. Is not clear. Here, mice with a keratinocyte-specific deletion of Fn14
(Tnfrsfl2a), a receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), have imiquimod-induced skin inflammation
such as decreased epidermal hyperplasia and
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decreased expression of the psoriasis signature gene. Indicates a decrease in. This corresponded to the expression of
Fnl4 in the keratinocytes of human psoriasis lesions and TWEAK being found in several sub-sets of skin cells.
Transcriptomic studies in human keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in
upregulating the expression of CXC chemokines, along with cytokines such as IL-23, inflammation-associated proteins
like SI00A8/9 and SERPINB1/B9, all previously found to be highly expressed in the lesional skin of psoriasis patients
(Gupta et al., 2021) Although these current treatments have proven efficacy, some patients fail to respond or become
resistant to therapy over time, or their disease comes back when treatment is stopped. Therefore, continuing efforts to
understand the pathological mechanisms that might occur in psoriasis are needed, including identifying novel molecules
that can be targeted alone or combined with existing therapies. TNF-like weak inducer of apoptosis (TWEAK, TNFSF12)
can be expressed similar to TNF (TNFSF2) is a membrane-bound molecule or soluble cytokine by a variety of cell types
including structural and immune cells (Chicheportiche et al., 1997, Bird et al., 2013). TWEAK binds to Fnl14 (fibroblast
growth factor inducible 14, TNFRSF12A) and regulates many cellular activities such as proliferation, migration,
differentiation, apoptosis, and angiogenesis (Leng et al., 2011). TWEAK is involved in the pathogenesis of several
inflammatory and autoimmune diseases (Burkly, 2014, Doerner et al.,, 2016). Recently, we have discovered that TWEAK-
deficient mice are protected from exhibiting severe imiquimod-induced skin inflammation with some characteristics of
psoriasis. Gene set enrichment analysis suggests an association between Fnl4 transcripts and their signaling mediators in
human psoriasis lesions (Leng et al., 2011). The pathogenic activity of TWEAK was subsequently validated by another
group using Fnl4-deficient mice in the same experimental model (Doerner et al., 2015). Other literature has found that
soluble TWEAK is upregulated in the sera of psoriasis patients and that expression of both TWEAK and Fnl14 is detected at
high levels in tissue sections of psoriasis-damaged skin (Sidler et al., 2017, Peng et al., 2018). A new therapeutic approach
to reduce skin lesions in psoriasis. The TWEAK primary cell target in the skin is unclear. Subcutaneous injection of
recombinant TWEAK bolus into mice was found to result in skin inflammation and some histological features reminiscent
of human psoriasis. It was associated with the production of a series of chemokines that attract the innate and adaptive
immune cells characteristic of psoriasis (Sidler et al., 2017). Many of these chemokines are products of keratinocytes, and
Fnl14 is expressed in keratinocytes

(Sidler et al., 2017), suggesting that this cell type may be central to the action of TWEAK. Before considering clinical
treatment for this pathway, how TWEAK in the skin, especially on keratinocytes, and its relationship to other pathogenic
molecules such as IL-17 and TNF that also have receptors on keratinocytes In this study, we investigated if TWEAK
signalling specifically in keratinocytes is required to develop psoriasis-like skin lesions after imiquimod treatment using
Fnl4-conditional knockout mice, and also performed RNA-sequencing analysis in human epidermal keratinocytes to
determine how TWEAK alone or in combination with IL-17 and TNF controls expression of a variety of gene sets found to
be upregulated in human psoriasis. Our data demonstrate that Fn14 signalling in keratinocytes is crucial for the
development of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish substantial similarities
in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, and notably, we found strong synergistic activities of
these cytokines acting together on a number of genes associated with psoriasis. Correspondingly, a similar effect of
blocking TWEAK therapeutically was observed in reducing skin lesions in mice compared to blocking either TNF or IL-
17A, and no greater effect was seen with combination treatments. These results suggest that TWEAK might be as good a
target to counter the keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as observed
when IL-17 and TNF are neutralized (Wang et al., 2021, Bilgic et al., 2016) The main goal of many gene expression
experiments is to detect transcripts that exhibit differential expression under a variety of
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conditions. Extensive statistical approaches have been developed to test differential expression using microarray data,

and the continuous probe intensity of the entire replication can be approximated by a normal distribution (Chandran and
Raychaudhuri, 2010, Cui and Churchill, 2003, Smyth, 2004). While these approaches can, in principle, be applied to RNA-
Sequencing data, other statistical models of discrete read counts that do not fit the normal distribution should be
considered.
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Early RNA-Sequencing studies showed that the distribution of read counts throughout replication follows a Poisson
distribution. This formed the basis for modelling RNA-Sequencing count data (Grant et al., 2005). However, further
studies
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have shown that biological variability is not captured by Poisson’'s assumptions and leads to
MATCHING BLOCK 6/20 W  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4 ...

high false positive rates due to underestimation of sampling errors (Marioni et al., 2008, Anders and Huber, 2010,
Lanhmead et al,, 2010). Therefore, a negative binomial distribution model that describes overdispersion or extra-
Poisson variability has been shown to best fit the distribution of read counts across biological

replication.

Review of Literature Psoriasis Vulgaris is a chronic disease that affects 1-3% of the population (Rohinson and Oshlack,
2010). In addition to the possible involvement of skin and joints, recent evidence suggests a link between psoriasis and
other systemic disorders (Gelfand et al.,, 2006). The molecular properties of psoriasis skin samples have led to a better
understanding of the etiology of the disease and helped identify therapeutic targets (Lebwohi, 2003). Psoriasis is one of
the most common chronic inflammatory skin diseases, affecting 1-3% of the adult population worldwide (Lebwohi,
2003). It is characterized by marked overgrowth and inadequate end differentiation of keratinocytes. In addition,
complex interactions between different cell types and various cytokines are known to contribute to the development of
psoriasis. The etiology is also based on complex interactions between genetic predisposition, important
histocompatibility alleles, and various environmental triggers (Lowes et al., 2007). However, from a molecular
perspective, the mechanisms responsible for the interaction of keratinocytes with the inflammatory cells that infiltrate
the epidermis are not yet fully understood. Analysis of the molecular background of psoriasis describes many disease-
related genes and proteins with aberrant expression patterns (Nomura et al., 2003), but little is known about the
regulatory pathways responsible for this aberrant expression. Recent evidence suggests that non-coding RNAs such as
microRNAs (miRNAs) and long noncoding RNAs (IncRNAs) contribute to the pathogenesis of psoriasis by affecting
protein expression and function in both keratinocytes and inflammatory cells. It suggests that it may be (Sonkoly et al.,
2007, Zibert et al., 2010, Ahn et al,, 2016, Gupta et al,, 2016, Tsoi et al., 2015). RNA Sewing Fundamentals:
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RNA Sequencing is the use of next-generation high-throughput sequencing technology to study, characterize, and
quantify genomic transcriptomes (Morin et al., 2008). Unlike previous methods, RNA sequencing uses synthetic
techniques to define nucleotide sequences and quantify RNA molecules in a sample (Wang et al., 2009). Next-
generation sequencing (NGS) can faithfully process this data in hours to days, making it an ideal method for RNA
analysis among many researchers (Kolodziejczyk et al., 2015). The use of this technology in research and literature has
exploded in popularity.

With recent discoveries in the use of RNA sequencing in many pathologies,
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there are many promising potential clinical applications for RNA sequencing (Beane et al., 2011). Several commercially
available RNA sequencing kits are available for each sample. Most follow similar processing steps but ultimately depend
on experimental considerations (

Chu and Corey, 2012). Analysis of
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total RNA, mRNA, and small RNA can be performed with most kits.

To isolate

4/15



Curiginal

76% MATCHING BLOCK 10/20 W  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5 ...

MRNA, use poly (T) primers attached to beads or magnets to bind mRNA and isolate these strands. For small or non-
coding RNA, gel electrophoresis is used to separate these molecules. Complete RNA separation uses a combination of
these two techniques (

Tuch et al,, 2010). Then ligate the adapter
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to the 5'end, 3'end, or both. When RNA is isolated, cDNA is generated, amplified, and fragmented. Some kits provide
RNA sequencing directly without creating cDNA. Although rRNA makes up a significant proportion of total RNA

and can be removed, it has
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little research interest. These samples are then sequenced by next- generation massively parallel sequencing
technology that utilizes sequencing by synthesizing short DNA strands complementary to cDNA. Once the reads are
generated, the software can be used to analyse the sequence reads and match the reads to parts of the genome.

You can also create a de novo transcriptome map by mapping gene fragments with sequencing analysis software. The
total number of reads for each gene product can be used to quantify proportional gene expression (Han et al., 2015). The
use of RNA-Sequencing has recently increased due to advances beyond previous attempts in transcriptome research.
Prior to NGS RNA sequencing, two well-known
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techniques were available. Hybridization of cDNA probes connected to microarrays enabled transcriptome analysis but
was limited by the need for extensive knowledge of genomes, transcripts, alternative splicing, and exons.

The background noise produced by cross-hybridization also limited resolution during attempts to quantify gene
expression. Another technique
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was Sanger sequencing, which used chain termination to determine nucleotide sequences. In contrast to NGS,

the Sanger method was more expensive and time- consuming and could only analyze a limited portion of the transcript
(Morin et al., 2008, Wang et al., 2009, Burroughs et al., 2013). Discovery of both non-coding RNAs such as. B. miRNAs
(miRNAs) have required
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the creation of assays to test these small non-coding RNAs with variant mRNAs at high throughput and

high resolution, as well as the discovery of post-transcriptional mRNA expression regulation (Klerk and Hoen, 2015).
RNA- Sequencing techniques allow researchers to perform both of these tasks and quantify
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RNA expression, and thus gene expression, in a single assay. The high throughput of RNA

https://secure.urkund.com/view/135597243-199313-106170#/ 5/15



Curiginal

sequences allows the transcriptome to be analyzed and efficiently compared across different environmental factors such
as time, different tissue samples, pathological conditions, and pharmacological interventions. The potential for de novo
transcriptome synthesis allows the analysis and discovery of new products without the need for
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prior genomic and transcriptional knowledge of the sample. The resolution of RNA sequences also enables the
identification of single nucleotide polymorphisms, novel post- transcriptional modifications, novel alternative splicing
patterns, and previously unidentified non-coding RNA molecules. RNA sequencing provides accurate quantification of
MRNA expression compared

to real-time PCR experiments (Scapato et al., 2015, de Klerk et al., 2014, Derks et al., 2015). RNA sequences can be used
to study the molecular basis of
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disease susceptibility, cancer etiology/progression, and response to treatment. RNA sequences have been used to
analyze the etiology of various malignancies such as psoriasis, lung cancer, and colon cancer. RNA sequencing can
identify differential expression of genes (DEGs), mutant genes, fusion genes, and gene isoforms in pathological
conditions. RNA sequencing also has potential for diagnostic and therapeutic applications. Current research on
colorectal disease using RNA sequencing reveals new discoveries that may help clinicians in the future

management of patients with colorectal disease. Transcriptome analysis is an important tool for characterizing and
understanding the molecular basis of phenotypic changes in biology, including disease. In recent decades, microarrays
have been the most important and widely used approach to such analysis, but recently high-throughput cDNA
sequencing (RNA-sequencing) has emerged as a powerful alternative (Mortazavi et al.,, 2008). Many applications have
already been found (Chen et al.,, 2011). RNA-sequencing uses next-generation sequencing (NGS) methods to sequence
cDNA from RNA samples, producing millions of short reads. These reads are then typically mapped to the reference
genome, and the number of reads mapped within the genomic traits of interest (such as genes or exons) is used as a
measure of the frequency of the traits of the analyzed sample (Oshlack et al., 2010). Perhaps the most common use of
transcriptome profiling is to search for differentially expressed (DE) genes. H. Look for genes that show differences in
expression levels between conditions, or genes that are associated with a particular predictor or response. RNA-
sequencing offers several advantages over microarrays for differential expression analysis. B. Ability to detect and
quantify previously unknown transcripts and isoforms with increased dynamic range and reduced background levels
(Agrawal et al., 2010, Bradford et al., 2010, Bullard et al., 2010). However, analysing RNA-sequencing data can be difficult.
Some of these issues are unique to next-generation sequencing methods. For example, differences in nucleotide
composition between genomic regions mean that
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reading ranges may not be uniform throughout the genome. In addition, more reads are mapped to longer genes than
shorter genes with the same expression level. In differential expression analysis, where genes are individually tested for
differences in expression between conditions, biases within the sample are usually ignored as they are expected to affect
all samples in a similar manner (Agrawal et al., 2010). RNA-sequencing experiments show other types of heterogeneity
between samples. First, the depth of the sequence or the library size (total number of reads allocated) usually varies from
sample to sample. That is, the counts observed between the samples cannot be compared directly. In fact, even in the
absence of true differential expression, if one sample is sequenced twice as deep as another, then all genes in the first
sample receive twice as many as the second sample. It is expected that we would like to avoid such confusion. The
effect of true differential expression. The easiest way to approach different library sizes is to simply rescale or resample
the read counts to get the same library size for all samples. However, such normalization is generally not sufficient. This
is because RNA-Sequencing counts essentially represent the relative abundance of genes, even if the libraries are actually
the same size. Some highly expressed genes can make up a very large proportion of the reads sequenced in the
experiment, so few reads need to be assigned to the remaining genes (Bullard et al., 2010). Therefore, the presence of a
small number of highly expressed genes suppresses the count of all other genes, and the latter group of genes are mis
expressed compared to samples with more evenly distributed reads. It is misunderstood that it can appear low and can
lead to many genes. More complex normalization schemes have been proposed to address this difficulty and allow
counts to be compared between samples (Bullard et al., 2010, Anders and Huber, 2010, Robinson and Oshlack, 2010). In
addition to library size, these methods also include estimating sample-specific normalization coefficients. It is used to
rescale the observed count. Using these normalization methods, the sum of the normalized counts across all genes are
therefore not necessarily equal between samples (as it would be if only the library sizes were used for normalization), but
the goal is instead to make the normalized counts for non-differentially expressed genes similar between the samples. In
this study, we use the TMM normalization (trimmed mean of M-values (Robinson and Oshlack, 2010)) and the
normalization provided in the DESeq package (Anders and Huber, 2010). A comprehensive evaluation of seven different
normalization methods was recently performed (Dillies et al., 2012), in which these two methods were shown to perform
similarly, and they were also the only ones providing

satisfactory results with respect to all metrics used in that evaluation. Still, it is important to keep in mind that even these
methods are based on an assumption that most genes are equivalently expressed in the samples, and that the
differentially expressed genes are divided more or less equally between up- and downregulation (Dillies et al.,, 2012).
Microarrays have been used routinely for differential expression analysis for over a decade, and there are well-established
methods available for this purpose (such as limma (Smyth, 2004)). These methods cannot be easily migrated to the
analysis of RNA- sequencing data (Robinson and Smyth, 2008). It is different from the data obtained from the microarray.
Intensities recorded from microarrays are treated as continuous measurements and are generally assumed to follow a
lognormal distribution, but counts from RNA-sequencing experiments are non-negative integers and therefore
essentially follow a discrete distribution. Poisson distribution and negative binomial distribution (NB) are the two most
commonly used models in the method explicitly developed for differential expression analysis of this type of count data
(Anders and Huber, 2010, Robinson and Symth, 2008, Auer and Doerge, 2011, Hardcastle and Kelly, 2010, Di et al.,, 2011).
Other distributions such as the beta-binomial distribution (Zhou et al., 2011) have also been proposed. The Poisson
distribution has the advantage of simplicity, with only one parameter, but limits the variance of the modelled variables to
the mean. The negative binomial distribution has two parameters that encode the mean and variance, so you can model
the more general mean and variance relationship. For RNA- sequencing, the Poisson distribution has been suggested to
be suitable for the analysis of engineering replication, but with high variability between biological replications, it is
accompanied by overdispersion, such as a negative binomial distribution. Distribution is required (Bullard et al., 2010,
Marioni et al., 2008). Some software packages represent RNA-sequencing data in converted quantities instead of using
integers directly. Long transcripts are expected to receive more reads than short transcripts with the same expression
level, so the goal of such a conversion is to normalize the count in relation to various library sizes and transcript lengths.
Is to do. Other normalization strategies can be used to address other biases, such as biases due to variable GC content in
reads. After such a conversion, the resulting value will no longer be an integer count. That is, you should not plug in
numerical-based methods for differential expression analysis. Therefore, of the methods evaluated in this study, only
nonparametric methods are suitable for RPKM
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values. Other software, such as Cufflinks / Cuffediff (Trapnell et al., 2010), provides an integrated analytical pipeline from
aligned reads to derivative results by inference based on FPKM values. The field of differential expression analysis of RNA-
sequencing data is still in its infancy, and new methods are constantly being introduced. To date, there has been no
general consensus on which method works best in a particular situation, and few detailed comparisons between the
proposed methods have been published. In a recent publication (Kyam et al,, 2012), four parametric methods were
compared in terms of their ability to distinguish between truly differentially expressed (DE) and truly non-DE genes under
different simulation conditions. The authors also compared duplications between sets of DE genes found differently in
practice data set. Another recent study (Robles et al,, 2012) evaluated the effect of increased sequence depth on the
ability to detect the DE gene and contrasted this with the benefits of increased sample size, the latter demonstrating to
be significantly greater. In (Nookaew et al., 2012), the authors published a case study on Saccharomyces cerevisiae,
comparing the results of several differential expression analysis methods of RNA-sequencing with each other, comparing
them with the results of microarrays, and generally between different methods. In this study, we investigated if TWEAK
signalling specifically in keratinocytes is required to develop psoriasis-like skin lesions after imiquimod treatment using
Fnl4-conditional knockout mice, and also performed RNA-sequencing analysis in human epidermal keratinocytes to
determine how TWEAK alone or in combination with IL-17 and TNF controls expression of a variety of gene sets found to
be upregulated in human psoriasis. Our data demonstrates that Fn14 signalling in keratinocytes is crucial for the
development of imiquimod-induced skin inflammation. Furthermore, transcriptomic data establish substantial similarities
in the genes induced in keratinocytes by TWEAK, IL-17, and TNF, and notably we found strong synergistic activities of
these cytokines acting together on a number of genes associated with psoriasis. Correspondingly, a similar effect of
blocking TWEAK therapeutically was observed in reducing skin lesions in mice compared to blocking either TNF or IL-
17A, and no greater effect was seen with combination treatments. These results suggest that TWEAK might be as good a
target to counter the keratinocyte hyperresponsiveness and dysregulated immune system seen in psoriasis as observed
when IL-17 and TNF are neutralized (Gupta et al., 2021).
Materials and Method The sample sequences were downloaded from the NCBI GEO Dataset (Gupta et al.,, 2021).
10samples of paired-end sequencing were selected, out of which 6 were TWEAK stimulated and 4 were TNF stimulated,
the metadata of the samples was downloaded on the workstation having an Intel Xeon 3.20GHz x20 processor and
132GB of RAM. Workflow is the series of activities that are necessary to complete a task. Each step in a workflow has a
specific step before it and a specific step after it. Quality Control by Fast QC Then, the data were analyzed for quality
control and trimming using Fast QC, which provides a simple way to do some quality control checks on raw sequence
data coming from high throughput sequencing pipelines, and the outcome of the Fast QC analysis shows whether the
trimming is needed or not. Comparing the results from standards suggests, that trimming is not needed in the data
obtained, the result of Fast QC is also shown in the below figures. The data was good with little noise. Building the
reference index by RStudio The Human reference genome of the human was downloaded for building a reference index
for alignment and mapping of the sequence from NCBI (National Center for Biotechnology Information), the reference
index was built using RStudio, using the Rsubread package and the base name was given as “chrl_mm10”, the figure is
attached below. Genome indexing can be described in a similar way to book indexing. If you want to know on which
page a particular word appears or where a chapter begins, it's much more efficient / faster to look it up in a ready-made
index than to look it up until you find each page in the book. The same is true for linear. Indexes allow aligners to narrow
down potential origins of query sequences in the genome, saving both time and memory. Alignment using Rsubread
Then, the alignment was done using pair-end sequencing alignment, by RStudio and by taking two FASTA files as input,
the output files are in BAM format using the reference index, Rsubread can be used for many processes like- Alignment,
quantification, and analysis of RNA sequencing data (including both bulk RNA-seq and scRNA-seq) and DNA sequencing
data (including ATAC-seq, ChlP-seq, WGS, WES, etc). Includes functionality for reading mapping, read counting, SNP
calling, structural variant detection, and gene fusion discovery. Can be applied to all major sequencing technologies and
to both short and long sequence reads (Liao et al., 2019) The following results were obtained after alignment; the list of
files is shown in below figure. Feature Count using Rsubread in terminal After the alignment, we got one BAM file instead
of two FASTA files and then the feature count was done in order to get the count table, it was done by using Rsubread in
the Ubuntu terminal and the out was in the form of the count.out file. The count data are structured as a table, which
reports the number of sequence fragments assigned to each gene for each sample, the count data were further filtered
for null, NA, and negative values in the table, as these values show errors in further steps. The count data output for 10
samples were 47895, but after filtering the negative values, NULL values, NA values and zero values, only 7322 reading
were left for further analysis of Differentially Expressed Genes. Feature Count is a general-purpose read summarization
function, which assigns to the genomic features (or meta-features) the mapped reads that were generated from
genomic DNA and RNA sequencing. RNA-seq reads may be aligned to the transcriptome rather than the genome. In this
case, there can be hundreds of thousands of transcripts, and each transcript becomes a reference sequence.
featureCounts supports thread-specific read counts when thread-specific information is provided (Yang et al., 2014).
Differentially Expressed Genes
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Differential expression analysis means taking
MATCHING BLOCK 20/20 SA Park_Jiae_33862914_BIO309.pdf (D138334149)

normalized read count data and performing statistical analysis to discover quantitative changes in expression levels

between experimental groups. The differentially Expressed genes was done in RStudio using package DESeq?2, the
following steps were followed, firstly the tables are converted to matrix, then the conditions are assigned to the data, the
data was then loaded to DESeq pipeline and different types og plots and graphs were obtained according to the need of
the analysis, like- dispersion plot, heatmap, scatter plot, histogram, MA plot, volcano plot, etc. Result and Discussion
Volcano Plot Another common and interesting comparison between the two treatment conditions is the adjusted P-
value and log fold change. This figure is called a volcano plot because it resembles an exploding volcano, with clusters of
data points near the origin and the fanning effect moving away from its central location. The volcanic plot shows the
statistical significance of the difference to the magnitude of the difference between the individual genes compared.
Usually indicated by a fold change of negative base 10log or base 2log, respectively. The P-value undergoes a negative
transformation, so the higher the data point along the y-axis, the smaller the P-value. Volcano graphs are generally
considered to be statistically differentially expressed based on the adjusted P value of the difference between treatments,
including some threshold indicators of the adjusted P value. Indicates the gene to be used. Changes in log multiples
along the x-axis show a clearer difference in extrema, and data points close to 0 represent genes with similar or same
mean expression levels. In the case of volcanic areas, as the name implies, it is expected to be quite widespread. The
wide dispersal indicates two treatment groups with significant differences in gene expression. It is quite rare for a volcano
plot to have almost or all data points gathered near the origin. MA Plot The MA chart can only compare two treatment
conditions at a time. However, all pairwise comparisons in this figure can be combined in a matrix format to provide

all possible combinations at once. In this figure, each cell represents a particular comparison, shown cell by cell or at the
intersection of rows and columns. This visualization allows the user to view all pairwise fold change comparisons and
average manifestations at once. In addition, this method allows direct comparison of pairwise treatment comparisons. It
provides an approach for determining which treatment comparisons are more or less similar in terms of both fold
change changes and mean expression levels. Like other matrix options, this process allows the user to visualize all
treatment-based comparisons in one diagram. Heatmap By comparison, you can also use a heatmap based on the
number of DEG's to summarize the same information. Using a color spectrum based on the magnitude of the DEG
count, the DEG heatmap can provide an easy way to read and interpret. For a DEG heatmap, each cell represents the
number of DSNs in that particular intersecting row and column. Arrangements along the selected color spectrum,
provide a visual indication of magnitude. Treatment group. The DEG heatmap has obvious drawbacks in terms of
redundancy. For the three factor levels, this figure is a good representation of the data. However, increasing the number
of factor levels will generate redundant cells. Cells are usually left blank to avoid misleading the user. This method is
counterproductive because it requires more effort to interpret the information efficiently. As the number of factor levels
increases, the usefulness of this type of visualization diminishes and is recommended only for some factor levels.
According to the heatmap the white colour shows the upregulated genes while the black colour shows the down
requlated genes. Dispersion Plot Another relatively simple visualization method associated with Tier 1 is to compare
expression levels between two samples or two treatment groups. This comparison is typically visualized using a scatter
plot. Each data point represents a single gene and its placement indicates the average expression level for each of the
two treatments. A scatter plot implemented in this way can be used to make a larger comparison between the two
treatment groups. The axes represent the expression levels for each category, so the data
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points along the diagonal show similar expression levels from both groups. Data points above or below the diagonal
indicate higher or lower expression levels of factor levels on the y-axis compared to factor levels on the x-axis,
respectively. Considering this scatter plot as a whole, clustering of all data points along the diagonal shows two samples
or treatments with very similar expression patterns across all genes, with the spread of data points from the diagonal.
Larger values indicate dissimilar expression levels. Hence, the below graph shows that the gene is negatively regulated.
PCA Biplot The PCA Biplot also known as Principal Components Analysis Biplot is a two-dimensional chart that
represents the relationship between the rows and columns. Hence, in this case the PCA Biplot is the representation of
the relationship of the rows and columns of the count data in DEG. Conclusion In this study, | have learned to analysed
the RNA Seq data of skin disease psoriasis by using R. In this study, | have learned to check the quality of the data using
Fast QC, then reference index was build for human reference genome, followed by alignment was done for pair end
sequence using Rsubread package. Feature count was done to get the count data of the sample sequence. Then,
differentially expressed gene analysis was done with the help of count data. Results were generated in the form of
volcano plot, MA plot, heatmap, dispersion plot and PCA Biplot. Our results suggest negative correlation through the
expression levels of psoriasis. It highlights that the samples requlated by TWEAK and TNF inhibit the expression of
psoriasis genes. This indicates the use of TWEAK and TNF as a possible treatment for psoriasis.

DEG is often used to determine genotype differences between two or more cellular states to support studies based on
specific hypotheses. Interpretation of this information can greatly benefit from the graphic display of the result file. Tier 1
functions provide relatively basic levels of information, including read count distributions, pairwise levels, and those used
to visualize DEG counts, while Tier 2 functions provide average level, use additional metrics such as multiple changes, P-
values-provide more detailed and informative visualizations. Box plots, violin plots, dot plots, and read count histograms
provide insight into the distribution of read counts for each sample or processing group. Scatter plots allow users to
visualize the overall similarity of expression levels by showing the expression levels of each gene in the two selected
treatments or samples. The DEG histogram and heatmap directly represent the number of DEGs in each comparison. MA
and volcano charts are useful for showing relative expression levels, changes in log multiples, and adjusted P-values.
Although not applicable to all users, 4-way plots can provide a higher level of detail by including a third treatment group
or sample as a relative or control group.
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Introduction The Central Dogma of Molecular Biology Introduction The central dogma of molecular biology
outlines the flow of information that is stored in genes as outlines the flow of information that is stored in genes as
DNA, transcribed into RNA, and finally translated into DNA, transcribed into RNA, and finally translated into
proteins (Crick, 1958; Crick, 1970). proteins (Crick 1958; Crick 1970).
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The development of next-generation high-throughput
sequencing (NGS) has revolutionized transcriptomics by
enabling RNA analysis with complementary DNA (cDNA)
sequencing (Wang et al., 2009). This method, called RNA-
Sequencing, has clear advantages over previous
approaches and has revolutionized the understanding of
the complex and dynamic nature of the transcriptome.
RNA-Sequencing provides a more detailed and
quantitative view of gene expression, alternative splicing,
and allele-specific expression. Recent advances in RNA-
Sequencing workflows, from sample preparation to
sequencing platforms to bioinformatics data analysis,
have enabled detailed transcriptome profiling and the
ability to elucidate
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The development of high-throughput next-generation
sequencing (NGS) has revolutionized transcriptomics by
enabling RNA analysis through sequencing of
complementary DNA (cDNA) ( Wang et al. 2009). This
method, termed RNA sequencing (RNA-Seq), has distinct
advantages over previous approaches and has
revolutionized our understanding of the complex and
dynamic nature of the transcriptome. RNA-Seq provides a
more detailed and quantitative view of gene expression,
alternative splicing, and allele-specific expression. Recent
advances in the RNA-Seq workflow, from sample
preparation to sequencing platforms to bioinformatic
data analysis, has enabled deep profiling of the
transcriptome and the opportunity to elucidate
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The advent of high-throughput next-generation
sequencing (NGS) technology has revolutionized
transcriptomics. This technological development solves
many
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The introduction of high-throughput next-generation
sequencing (NGS) technologies revolutionized
transcriptomics. This technological development
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conditions. Extensive statistical approaches have been
developed to test for differential expression with

microarray data,
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Early RNA-Sequencing studies showed that the
distribution of read counts throughout replication follows
a Poisson distribution. This formed the basis for
modelling RNA-Sequencing count data (Grant et al.,
2005). However, further studies
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Early RNA-Seq studies suggested that the distribution of
read counts across replicates fit a Poisson distribution,
which formed the basis for modeling RNA-Seq count

data (Marioni et al. 2008). However, further studies
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high false positive rates due to underestimation of
sampling errors (Marioni et al., 2008, Anders and Huber,
2010, Lanhmead et al., 2010). Therefore, a negative
binomial distribution model that describes overdispersion
or extra-Poisson variability has been shown to best fit the
distribution of read counts across biological
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high false-positive rates due to underestimation of
sampling error (Anders and Huber 2010; Langmead et al.
2010; Robinson and Oshlack 2010). Hence, negative
binomial distribution models that take into overdispersion
or extra-Poisson variation have been shown to best fit the

distribution of read counts across biological
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gene expression studies relied on low-throughput
methods, such as northern blots and quantitative
polymerase chain reaction (qPCR), that are limited to
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RNA Sequencing is the use of next-generation high-
throughput sequencing technology to study,
characterize, and quantify genomic transcriptomes
(Morin et al., 2008). Unlike previous methods, RNA
sequencing uses synthetic techniques to define
nucleotide sequences and quantify RNA molecules in a
sample (Wang et al.,, 2009). Next-generation sequencing
(NGS) can faithfully process this data in hours to days,
making it an ideal method for RNA analysis among many
researchers (Kolodziejczyk et al,, 2015). The use of this
technology in research and literature has exploded in
popularity.
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RNA sequencing is the use of high throughput next
generation sequencing technology to survey,
characterize, and quantify the transcriptome of a
genomell]. In contrast to previous methods, RNA
sequencing utilizes sequencing by synthesis technology
to define the nucleotide sequences and quantify RNA
molecules in a sample[2]. Next generation sequencing
(NGS) can process this data in hours to days with high
fidelity, making it the preferred technique for RNA
analysis amongst many researchers|[3]. The utilization of
this technology in research and literature has been
exploding in popularity.
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there are many promising potential clinical applications
for RNA sequencing (Beane et al., 2011). Several
commercially available RNA sequencing kits are available
for each sample. Most follow similar processing steps but
ultimately depend on experimental considerations (
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There are many promising potential clinical applications
of RNA sequencing with recent discoveries using RNA
sequencing in many disease states[4,5]. Several
commercial RNA sequencing kits are available for any
sample. Most follow similar processing steps, but

ultimately depend on experimental considerations[6].
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MRNA, use poly (T) primers attached to beads or
magnets to bind mRNA and isolate these strands. For
small or non-coding RNA, gel electrophoresis is used to
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separate these molecules. Complete RNA separation uses
a combination of these two techniques (
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MRNA isolation, poly(T) primers attached to beads or
magnets are used to bind mMRNA and isolate these
strands. For small RNA molecules or non-coding RNA,
gel electrophoresis is used to isolate these molecules.
Total RNA isolation utilizes a combination of these two

techniques|7].
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to the 5'end, 3'end, or both. When RNA is isolated, cDNA
is generated, amplified, and fragmented. Some kits
provide RNA sequencing directly without creating cDNA.
Although rRNA makes up a significant proportion of total
RNA
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to the 5" end, 3" end, or both. Once RNA is isolated, cDNA
is generated, amplified, and then fragmented. Some kits
provide direct RNA sequencing without the need to
create cDNA. rRNA can be removed since it makes up a

significant proportion of the total RNA
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little research interest. These samples are then sequenced
by next- generation massively parallel sequencing
technology that utilizes sequencing by synthesizing short
DNA strands complementary to cDNA. Once the reads
are generated, the software can be used to analyse the
sequence reads and match the reads to parts of the
genome.
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little research interest. These samples are then sequenced
through massive parallel next generation sequencing
technologies that utilize sequencing by synthesis of short
DNA strands complimentary to the cDNA. Once the reads
are produced, software is available to analyze the
sequence reads and correspond the reads to portions of
the genome.
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connected to microarrays enabled transcriptome analysis
but was limited by the need for extensive knowledge of
genomes, transcripts, alternative splicing, and exons.
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techniques were available before NGS RNA sequencing.
Hybridization of cDNA probes attached to microarrays
allowed for transcriptome analysis but was limited by the
requirement for extensive knowledge of the genome,

transcription products, alternative splicing, and exons.
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determine nucleotide sequences. In contrast to NGS, methods to determine nucleotide sequences. In contrast
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RNAs with variant mRNAs at high throughput and coding RNAs along with variant mRNAs with high
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RNA expression, and thus gene expression, in a single RNA expression and thus gene expression with a single
assay. The high throughput of RNA assay. Because of the high throughput nature of RNA
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prior genomic and transcriptional knowledge of the prior genomic and transcriptional knowledge of the
sample. The resolution of RNA sequences also enables sample is not needed, allowing analysis and discovery of
the identification of single nucleotide polymorphisms, novel products. The resolution of RNA sequencing also
novel post- transcriptional modifications, novel allows for the identification of single nucleotide variants,
alternative splicing patterns, and previously unidentified novel post-transcriptional modification, novel alternative
non-coding RNA molecules. RNA sequencing provides splicing patterns, and non-coding RNA molecules that
accurate quantification of mMRNA expression compared have not been previously identified. RNA sequencing

provides an accurate quantification of mMRNA expression
as compared
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disease susceptibility, cancer etiology/progression, and
response to treatment. RNA sequences have been used
to analyze the etiology of various malignancies such as
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psoriasis, lung cancer, and colon cancer. RNA sequencing
can identify differential expression of genes (DEGs),
mutant genes, fusion genes, and gene isoforms in
pathological conditions. RNA sequencing also has
potential for diagnostic and therapeutic applications.
Current research on colorectal disease using RNA
sequencing reveals new discoveries that may help
clinicians in the future
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disease susceptibility, cancer pathogenesis/progression,
and response to therapy. RNA Sequencing has been used
to analyze the pathogenesis of several malignancies such
melanoma, lung cancer, and colorectal cancer. RNA
sequencing can identify differential expression of genes
(DEG's), mutated genes, fusion genes, and gene isoforms
in disease states. RNA sequencing has the potential for
diagnostic and therapeutic applications as well. Current
research in colorectal disease using RNA sequencing are
unlocking new discoveries that may help clinicians
treating patients with colorectal disease in the future.
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total RNA, mRNA, and small RNA can be performed with
most kits.
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Total RNA, mRNA, and small RNA analysis can be done

with most kits.
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normalized read count data and performing statistical
analysis to discover quantitative changes in expression
levels
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