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Utilizing artificial intelligence for
environmental sustainability 13
NehaMumtaz 1, Tabish Izhar 1, Govind Pandey 2 and Pawan Kumar Labhasetwar 3
1Department of Civil Engineering, Integral University, Lucknow, Uttar Pradesh, India;
2Department of Civil Engineering, Madan Mohan Malaviya University of Technology,
Gorakhpur, Uttar Pradesh, India; 3Water Technology and Management Division, CSIR-
National Environmental Engineering Research Institute, Nagpur, Maharashtra, India

13.1 Introduction

The implementation of artificial intelligence (AI) and its extremely wide influence
across various sectors necessitates an assessment of its implications on achieving
the Sustainable Development Goals. The rapid progress of AI must be accompanied
by the appropriate regulatory knowledge and supervision for AI-based technologies
in enabling sustainable development. Failing to do so might lead to inconsistencies
in terms of accountability, security, and ethical norms [1].

Unprecedented stresses on the environment are escalating by the second, leading to
disastrous consequences. During the past industrial revolution, detrimental conse-
quences were extensively imposed on our planet. Climate change, loss of biodiversity,
disturbed biogeochemical cycles, and loss of land are the boundaries we have crossed
in reaching the threshold limit of the earth system [2].

The triple bottom line [3] of 3Psdpeople, planet, and profit [4,5]dshown in
Fig. 13.1 comprises interconnected factors that are the building blocks of environ-
mental sustainability. Social, economic, and environmental variables should be viable,
equitable, and bearable to attain sustainability in a true sense [6].

The United Nations has established 17 Sustainable Development Goals (SDGs) “to
achieve a better and more sustainable future,” some of which are discussed in this
chapter. Considering SDG1, “no poverty,” COVID-19 has instigated a rise in poverty
on a global level. In 2020, approximately 71 million people were strapped into life-
threatening paucity. An economic loss of $23.6 billion due to natural disasters has
exacerbated global poverty. Since the 19th century, the share of the population living
under extreme poverty has been reduced from 33% to 9%, which is a notable decline.
The healthcare facilities referred to in SDG3 have also improved during the 20th cen-
tury; the maternal death rate has dropped by 37%, and the death rate of children below
age 5 has decreased by 47%. Complying with SDG7 referring to global electricity
accessibility, around 87% of the people around the globe use sustainable and cleaner
energy in the 20th century. On the other hand, the world is subjected to 415-ppm car-
bon dioxide levels leading toward grave consequences of climate change, and
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according to United Nations; the persistence of such anthropogenic conditions will
pose the threat of human extinction [7].

SDG6, SDG7, SDG13, SDG14, and SDG15, which address water security; clean
air; climate change and weather and disaster resilience; healthy oceans; and biodiver-
sity and conservation, respectively, are the prime environmental sectors of concern.

13.1.1 Sustainable development goal 6: “ensure access to water
and sanitation for all”

Although momentous growth has intensified accessibility to pure drinking water and
hygiene, billions of individuals, specifically in rural areas, still face a dearth of these
vital and fundamental amenities [8]. Globally, one of every three individuals lacks ac-
cess to pure drinking water [9], two of every five lack access to basic handwashing
facilities with water and soap [10], and approximately 673 million people still defecate
in open areas [11]. The COVID-19 pandemic has highlighted vital necessities related
to health, hygiene, and accessibility to safe water in disease prevention and control
[12]. Hand hygiene [13] can save a person’s life. Handwashing is one of the most effi-
cient methods to prevent disease and the spread of pathogens, including the COVID-19
virus [14]. Despite this, billions of people still lack access to clean drinking water, and
financing is insufficient [15].

Figure 13.1 Components of environmental sustainabilitydtriple bottom line approach.
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13.1.2 Sustainable development goal 7: “ensure access to
affordable, reliable, sustainable and modern energy”

With hopeful indications that energy is being transformed into a more viable and
largely accessible resource, the global population is progressing toward Goal 7 [16].
Access to electricity has begun to improve in undeveloped countries, energy produc-
tivity is growing, and renewable energy is making considerable headway in the elec-
trical sector [17]. Nonetheless, increasing access to clean and safe cooking fuels and
technologies for three billion people is a priority [18]. Meanwhile, escalating the
use of inexhaustible energy sources from outside the electrical sector and expanding
the electrical base in sub-Saharan Africa would require more concerted effort [19].

13.1.3 Sustainable development goal 13: “take urgent action to
combat climate change and its impacts”

The year 2020 will go down in history as the second hottest on record [20]. Climate
change has affected every single nation on each continent [21]. It is imposing havoc
on national financial states and placing livelihoods in jeopardy [22]. The weather is
changing, sea levels are rising, and extreme weather is becoming more frequent
[23]. Because of travel restrictions and economic slowdowns arising from the
COVID-19 pandemic [24], greenhouse gas emissions are expected to decline by
roughly 6% in 2020 [25]. However, this improvement is only temporary. In the
near future, there will be no reversal in the uptrend of climate change; as the global
economy recovers from the epidemic, emissions are expected to rise again [26].

13.1.4 Sustainable development goal 14: “conserve and
sustainably use the oceans, seas and marine resources”

The ocean is vital to the global processes that make our planet habitable. The ocean
influences all our rain, drinking water, meteorological conditions, temperature, sea-
shores, many of our foodstuffs, and even the oxygen we breathe. Vigilant supervision
of this vital global resource is required for a sustainable future [27]. Coastal waters, on
the other hand, are now deteriorating from pollution, and ocean acidification is
severely affecting ecosystems and species. Small-scale fisheries are also suffering as
a result [28].

13.1.5 Sustainable development goal 15: “sustainably manage
forests, combat desertification, halt and reverse land
degradation, halt biodiversity loss”

The survival of the human race is dependent on nature; the oxygen we breathe is pro-
vided by nature, and it regulates our weather patterns. It also plays a crucial role in
pollinating our crops and provides us with fiber, food, and fodder. However, it is
increasingly becoming stressed. Life on land is in danger.

Anthropogenic activities have changed over 75 percent of the world’s area, constrain-
ing wildlife and the environment to an ever-smaller swath of earth [29]. According to the
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Global Assessment Report on Biodiversity and Ecosystem Services (2019), approxi-
mately one million plant and animal species are threatened. The report recommends
drastic environmental restoration and protection measures [30]. It has been revealed
that the health of ecosystems on which humanity and all other species rely is deterio-
rating at an unprecedented rate. Globally, it influences the fundamentals of our liveli-
hoods, food security, economies, quality of life, and health. Human-induced
deforestation [31] and desertification, along with climate change, exemplify enormous
impediments to sustainable development, affecting millions of lives and livings [32].

Forests are vital to the existence of life on Earth and crucial in the fight against
climate change [33]. Land restoration is important for enhancing livelihoods, reducing
vulnerability, and reducing economic hazards [34]. The state of our planet also affects
the spread of zoonotic diseases that may be passed from animals to humans [35]. In-
fections in animals can transfer to livestock and humans as people continue to invade
natural areas, increasing the risk of disease development and propagation [36].

The literature review was carried out by searching specific keywords such as environ-
mental sustainability, artificial intelligence (AI), and sustainable development goals in Sco-
pus. From the search, 1601 results were obtained for the last 10 years of data (2000e21).
The publication statistics reveal that environmental sustainability and AI have been much-
researched areas over the last 10 years. The bibliometric content analysis displaying
network visualization was done using VOSviewer version 1.6.16, with the co-
occurrencekeyword threshold taken as 20.Thenetworkvisualization is shown inFig.13.2.

Figure 13.2 Bibliometric content analysis displaying network visualization.
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Environmental uses of AI include agricultural yield predictions [37], wildfire man-
agement [38], analysis of poaching in protected areas [39], disaster occurrence, inten-
sity, and impact predictions [40], bird migration forecasts [41], and as a tool to combat
deforestation [42]. In the agricultural sector, AI is helping farmers monitor their crops
[43] and diseases and predicting planting and harvesting dates to eventually increase
their productivity [44] and decrease fertilizer use [45].

Indeed, AI is increasingly transforming industry domains, but it can also be used to
harness our ability to monitor and manage our environment for more sustainable out-
comes [46]. For instance, deep learning approaches have transformed our ability to
leverage large amounts of satellite remote sensing data collected across the globe
for more accurate land cover mapping [47]. Also, various multinationals like Microsoft
AI for Earth [48], Facebook, Tesla, Google, Apple, PwC have been using the power of
AI for better results [49].

Microsoft Zero Carbon Footprint by 2030 initiative is to become carbon-negative
using AI-based Microsoft Azure, a cloud repository. Similarly, Google DeepMind is
a specialized subdivision dedicated to AI interventions to cool the Google data centers
accordingly [48,50].

13.2 Artificial intelligencedthe game-changer

Since the inception of smart agriculture, weather forecasting, oceanic monitoring,
decentralized trial energy, water grids, and trading in the early 1990s, AI has been
an active Earth game-changer [51]. The accessibility of big data, open-source software,
improved algorithms, accelerating returns, processing power has led to an efficiently
connected globe [52]. The amalgamation of these elements has facilitated AI’s transi-
tion from in-vitro to in-vivo contemporary applications [53]. The indicative timeline of
AI as an Earth game-changer in Fig. 13.3 reveals the progression of an AI-enabled bet-
ter world.

Figure 13.3 Chronology of artificial intelligence in environmental sustainability [51,54].
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13.3 Artificial intelligence and nature: better together
for enabling environmental sustainability

Environmental sustainability [55] requires a balance between its components such as
water security, healthy oceans, clean air, climate change, biodiversity, weather predic-
tion, and disaster resilience (Fig. 13.4). AI can accelerate global efforts to protect the
environment and save resources by detecting energy emission reductions, assisting in
CO2 removal, aiding in the creation of greener transportation networks, monitoring
deforestation, and forecasting extreme weather occurrences [57].

The application of AI can channel and tackle environmental issues. In the case of
clean water and sanitation referring SGD six proper water-supply management and
monitoring [58], water quality modeling and data alert [59], self-adaptive water filtra-
tion [60], assets maintenances on the water as well as wastewater expenses [61]; appli-
cation of AI can act as a positive catalyst.

13.3.1 Climate change

Optimized energy system forecasting can be used for clean power generation to fight
climate change [62]; this forecasting can also be considered for smart grids [63] for

Water security Weather and 
disaster resilience 

Biodiversity and 
conserva�on

Climate change

Healthy oceans 

Clean air 

Figure 13.4 Equilibrium of environmental sustainability [56].
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electricity use [64] and to predict solar flares for power grid protection [65]. Along
with these, renewable energy plant assessments [66], optimized virtual power plants
[67], and optimized decentralized and peer-to-peer renewable energy systems [68]
can prove beneficial.

Considering the need for smart cities and homes, sustainable buildings, energy-
efficient building management, intelligent transport systems, and proper urban plan-
ning play key roles. Smart traffic lights [69] and parking systems for urban mobility
management [70], along with optimized sustainable building design [71e73], will
lessen the burden of greenhouse gases.

Energy-efficient building management systems [74], auditory responsive light-
ing and heating [75], and optimized urban-level energy generation and use [76]
including analytics and automation for smart urban planning [77] will also prove
to be a smart decision to curtail the adverse impacts of climate change and global
warming.

Implementing smart transport system AI-enabled electric cars [78] or autono-
mous vehicles used for efficient transport can reduce the carbon footprint
[79,80]. Integrated cost-efficient transport systems, optimized traffic flows [81]
along with on-demand shared transport mobility [82] can contribute to reducing
emissions. AI and machine learning can reduce energy consumption and be impor-
tant factors in infrastructure communication and the optimization of vehicles [83],
including demand-response charging infrastructure in the transportation and plan-
ning systems [84].

For sustainable land use, machine learning can easily predict the early crop yield
[85] involving artificial cognition to achieve precision agriculture and nutrition [86].
For crop management and crop issues [87] early detection can be achieved using
deep learning, artificial neural networks (ANNs), recurrent neural networks, and
autoencoders [88] to forecast hyperlocal weather [89].

Machine learning is applied in automated and enhanced land-use [90] change detec-
tion to avoid deforestation by ANNs, Bayesian networks, and generalized linear mixed
models [91]. Big data, wearable sensors [92], and machine learning applications in
monitoring the health of cattle are a recent revolution in livestock farming [93].

To control the excessive exploitation of resources contributing to climate change
resilience, AI, Internet of Things, and blockchain technology are applied to affect sup-
ply chain monitoring and its transparency [94] and achieve sustainable production and
consumption. In addition, the intervention of AI in the active optimization of industrial
machinery and manufacturing [95] and the use of digital twins for life span perfor-
mance optimization [96] are enhancing factors.

Smart fresh-food replacement [97] and smart recycling systems [98] are paving the
way to more sustainable production and smarter consumption using AI-enabled envi-
ronmental sustainability of products [46].

13.3.2 Biodiversity and conservation

Habitat protection and restoration by precision monitoring of ecosystems [99] using AI
are gaining momentum. Bird habitat and migration pattern prediction [100], simulation
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of animal and habitat interaction [101], habitat loss detection and monitoring [102],
microdrones for pollination [103], and optimized breeding of plants [104] can be
used in biodiversity conservation through deep learning and AI intervention.

For pollution control, analysis of urban runoff quality issues by decision support
and responsible AI is leading to multiobjective optimization [105]. Pollutant dispersal
prediction and tracking [106] can be achieved through big data compilation and
modeling.

Currently, machine-automated biodiversity analysis [107], smart mosquito traps
[108], and vector-borne disease control [108] are done globally. Plant disease identi-
fication and detection using deep learning [109] and image computation [110] can be
fruitful in detecting invasive species and disease control.

Sustainable trade is a key factor in sustainable development. The detection of un-
authorized animal capture [111] and image-based detection of illegal wildlife trade
[112] through AI have potential. Poacher route prediction [113] and high-risk animal
tracking [93], food value chain optimization [114,115], supply chain monitoring
[116] and origin tracking [117] can boost sustained trading and environmental
resilience.

13.3.3 Healthy oceans

Disruptive technology applications using AI can create a balance among aquacul-
ture, sustainable fishing, and trade [118]. Breakthrough technologies such as
drones, deep data mining, machine learning, and AI can prevent plastic pollution
and illegal dumping in seas and oceanic reservoirs [119]. Protecting habitats in
marine ecosystems, especially in areas beyond national jurisdiction, facilitated by
a data-driven AI approach will be less time-consuming and more hassle-free. Pre-
dictive marine habitat mapping can be used to protect the megabenthos [120]. Sea
surface temperature modeling through soft computing [121], along with an estima-
tion of the partial pressure of CO2 remote sensing and machine learning, can curtail
airesea CO2 flux. Thus, by involving an ensemble of machine learning and
decision-making, marine acidification and coral bleaching can be reduced to a
greater extent [122].

13.3.4 Water security

Machine learning systems [123] enable “responsible AI” in the water supply [124] and
in achieving water efficiency and plays a critical role in water security [105]. The ANN
can be deployed for catchment flow estimation and control [125]. SDG3, related to
health and sanitation, can be reaffirmed with AI in underdeveloped countries, too
[126]. The application of machine learning and simulation leads to the implementation
of toilet alarms in informal settlements for better sanitation [127]. The tracking, fore-
casting, and planning of drought using extreme machine learning provide significant
output [128].
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13.3.5 Clean air

Application of ANN in estimating PM2.5 peak concentration value [129] can be
beneficial inaccurate air pollution forecasting. The necessity of clean air in the
COVID-19 pandemic resulted in Arduino’s inbuilt air purification systems [130].
Monitoring and preventing air pollution [131] and accurate primary pollutant esti-
mating are multifold through AI interpolation [132]. Early warning and monitoring
systems [133] equipped with ensemble machine learning and AI have high-
performance efficiency [134]. In terms of clean fuel generation, production of clean
fuel, and optimization of an energy-exergy domain, the application of genetic algo-
rithms, deep learning, and machine learning are promising. Real-time, integrated,
adaptive urban management of air quality parameters [129] through ANN can be
done in less time and smoothly [135].

13.3.6 Weather and disaster resilience

There has been an exponential increase in climate-induced disasters in the last de-
cades. The advances in disaster prediction and weather forecasting using data ana-
lytics [136], drones [137], deep learning models [138] are abreast with AI. Using
machine learning algorithms, rainfall forecasting [139], prediction of tornadoes
[140], cyclones [141], and floods [142] are now easier tasks. The use of AI has
become imperative during this pandemic situation too. The ongoing epidemic of
COVID-19 is forecasted through adaptive machine learning and can reduce the
disease burden in minimum dependencies in less time [143]. The hazard impact
assessment and visualization can be effortlessly done by equipped decision support
system [144]. In addition, the utilization of ANN [145] to obtain accurate and effi-
cient forecast-based financing [146] will be a promising alternative for resilience
planning [84].

13.4 Unintended consequences of artificial intelligence

The risks associated with general AI [147] can be segregated into control threats,
financial threats, moral threats, performance threats, security threats, and social
threats. The intimidations due to unintended impacts of AI concerning the control,
economic, ethical, performance, safety, societal hazards are enumerated as follows
in Table 13.1:

13.5 Challenges of using artificial intelligence in
environmental sustainability

According to a comprehensive assessment of the literature, research into AI for sus-
tainability is being hampered [55]by its too much dependency on previous data in
the case of machine learning models [153]. Uncertainty in AI-enabled interventions
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and decision-making [154] is observed during reinforced learning. In today’s world,
cybersecurity risks are also seen as a significant problem [155]. AI applications can
have negative consequences, especially in the bioethical domain [156]. Measurement
of the impact of intervention techniques is difficult in AI-enabled environmental sus-
tainability interventions [157]. Researchers and AI experts must ensure that data pro-
cured from AI systems must be clear, ethical, and credible [158]. There is also an issue
of delivering a “responsible AI” excluding biases [159]. Moreover, funding by multi-
national companies, higher education institutions, and governmental organizations for
the research and innovation of such technologies is of major concern. Globally, appro-
priate standardizations for producing and applying AI interventions, as the demand for
automation solutions requires higher precision data-study for environment-related as-
pects [160].

13.6 Conclusion

To achieve the SDGs, AI can cater to better decision-making, and environmental im-
pacts can be channeled by incorporating multicriteria analysis in decision support sys-
tems. The AI-coupled decision support system will strengthen the sustainability
indicators and enhance environmental protection and sustainable planning. While

Table 13.1 Artificial intelligence (AI)-imposed risks and their salient features.

Hazards Features Investigators

Control related e Lack of ability to manage malicious AI
e Hazard of AI being “mischievous”

[148]

Financial aspect e Accountability threat
e “Clean sweep” concentration of authority threat
e Job-displacement risks
e Reputation risk

[149]

Moral risk e Objective alignment threat
e “Lack of values” threat
e Value alignment risk

[150]

Performance threat e Risk of favoritism
e Risk of error
e Risk of interpretability
e “Black box” risk
e Risk of stability of performance

[41]

Safety hazard e Cyber invasion threat
e Open-source software threat
e Privacy threat

[151]

Public hazard e Autonomous weapons proliferation threat
e “Intelligence divide” threat

[152]
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implementing AI to achieve the SDGs, the threats and unintended consequences
should also be considered. In past decades, much research has been done focusing
on deploying AI to achieve the SDGs. However, significant lab-based studies are
required to assess the credibility of AI in a real-world situation without compromising
the associated risks. Most applications concentrate only on using automated and aided
intelligence to extract value from massive unstructured real-time sources. Future appli-
cations will very certainly include more systems empowered by autonomous decision-
making, posing new opportunities and threats. Identifying and scaling these pioneering
innovations is a challenge for inventors, researchers, stakeholders, and governments. It
is also suggested that mainly AI is applied in financially strong and developed econ-
omies, but it will be a biased condition for underdeveloped and educationally back-
ward countries to avail its benefits. Thus, awareness regarding AI can be created by
introducing it into the education curricula of developing countries. The higher educa-
tion institutes are the base for any country pledging to build an environmentally sus-
tainable nation. Proper facilities and adequate funding should be provided for
conducting unbiased research in the field of AI applications in achieving environ-
mental aspects. If things get right at their respective places, surely a day will come
for the AI-enabled sustainable environmental revolution, which will pave the way
from crisis to sustainability.
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