# MICROBIAL EXTREMOZYMES Novel Sources and Industrial Applications





**Edited by Mohammed Kuddus** 

# Microbial Extremozymes Novel Sources and Industrial Applications

This page intentionally left blank

# Microbial Extremozymes Novel Sources and Industrial Applications

### Edited by

**Mohammed Kuddus** Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia



Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

#### Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

#### Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

#### British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-12-822945-3

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Patricia Osborn Acquisitions Editor: Nina Bandeira Editorial Project Manager: Andrea Dulberger Production Project Manager: Kumar Anbazhagan Cover Designer: Victoria Pearson

Typeset by STRAIVE, India



### Contents

#### Contributors

#### 1 Microbial screening for extremozymes

xi

Mohammed Kuddus, Roohi, and Naushin Bano

| Introduction                              | 1 |
|-------------------------------------------|---|
| What are extremozymes?                    | 1 |
| Classification of extremophiles           | 1 |
| Thermophiles                              | 1 |
| Hyperthermophiles                         | 2 |
| Psychrophiles                             | 2 |
| Acidophiles and alkaliphiles              | 3 |
| Barophiles                                | 3 |
| Halophiles                                | 3 |
| Radiophiles                               | 3 |
| Industrial relevance of extremozymes      | 3 |
| Screening for extremozymes                | 4 |
| Screening of thermophiles                 | 4 |
| Screening of psychrophiles                | 4 |
| Screening of alkaliphiles and acidophiles | 5 |
| Screening of barophiles                   | 5 |
| Screening of halophiles                   | 5 |
| Functional approach for screening         | 5 |
| Future prospects of extremozymes          | 5 |
| Conclusion                                | 6 |
| References                                | 6 |

### 2 Structure-function relationship of extremozymes

Muhammad Fayyaz ur Rehman, Abeera Shaeer, Aima Iram Batool, and Mehwish Aslam

| Introduction                                    | 9  |
|-------------------------------------------------|----|
| Genome and proteome studies to identify         |    |
| extremozyme                                     | 10 |
| Directed evolution                              | 11 |
| Rational/semirational design                    | 12 |
| Factors affecting extremozyme                   |    |
| functionality and stability                     | 12 |
| Changes in amino acid residues                  | 12 |
| Role of ion pairs in hyperthermophilic proteins | 13 |
| Cooperative association                         | 15 |
| Solvent-exposed surface area                    | 15 |
| Catalytic mechanisms                            | 15 |

| Thermal and catalytic properties        | 16 |
|-----------------------------------------|----|
| Thermophilicity and structural features | 16 |
| pH adaptations and structural features  | 17 |
| Halophilicity and structural features   | 17 |
| Piezophiles and structural features     | 17 |
| Radiophiles and structural stability    | 18 |
| Metallophiles                           | 18 |
| Xerophiles and structural stability     | 18 |
| In silico tools to study extremozyme    | 18 |
| Biophysical techniques to characterize  |    |
| extremozymes                            | 19 |
| Biotechnological applications of        |    |
| extremozymes                            | 19 |
| Thermophilic pectinases                 | 19 |
| Thermophilic cellulases                 | 19 |
| Thermophilic xylanases                  | 20 |
| Thermophilic amylases                   | 20 |
| Thermophilic proteases                  | 20 |
| Thermophilic lipases                    | 21 |
| Thermophilic laccases                   | 21 |
| Thermophilic phytases                   | 21 |
| References                              | 23 |

#### 3 Innovative technologies for enzyme production from extremophilic microbes

Rachana Singh and Paras Porwal

| Introduction                                  | 31 |
|-----------------------------------------------|----|
| Traditional to modern techniques              | 31 |
| Culture-dependent approach                    | 34 |
| Metagenomics or culture-independent technique | 34 |
| Sequence-based approaches                     | 34 |
| Function-based approach                       | 35 |
| Functional screening of libraries             | 35 |
| Conclusion                                    | 36 |
| References                                    | 37 |

#### 4 Cold-active enzymes: Enabling nonthermal processing in food industry

| Vijayanand Adapa, L.N. Ramya, and K.K. Pulicherla | ł |
|---------------------------------------------------|---|
|---------------------------------------------------|---|

| Introduction | 39 |
|--------------|----|
|              |    |

| Definition of psychrophilic enzymes             | 39 |
|-------------------------------------------------|----|
| Need for psychrophilic enzymes                  | 40 |
| Nonthermal food processing                      | 40 |
| Ambient temperature biocatalysis                | 42 |
| Utilization of cold-chain                       | 44 |
| List of psychrophilic enzymes and their sources | 46 |
| Molecular adaptations of cold-active enzymes    | 46 |
| Conclusion                                      | 50 |
| References                                      | 50 |

### 5 Metagenomic approach for the isolation of novel extremophiles

#### Salma Mukhtar, Naeem Rashid, Muhammad Farhan Ul Haque, and Kauser Abdulla Malik

| Introduction                        | 55 |
|-------------------------------------|----|
| Saline and arid environments        | 56 |
| Hot and cold environments           | 60 |
| Acidic and alkaline environments    | 61 |
| High pressure                       | 62 |
| Radiations                          | 62 |
| Conclusions and future perspectives | 62 |
| References                          | 62 |

### 6 Microbial extremozymes: Novel sources and industrial applications

#### Hayrunnisa Nadaroglu and Muhammed Seyid Polat

| Microorganisms                             | 67 |
|--------------------------------------------|----|
| General properties of archaea              | 67 |
| Thermophilic proteins                      | 69 |
| Piezophilic proteins                       | 69 |
| Acidophilic proteins                       | 69 |
| Halophilic proteins                        | 69 |
| Enzyme production in industrial scale      | 70 |
| Enzymes effective for polysaccharides in   |    |
| industrial scale                           | 70 |
| Enzymes effective for proteins proteases   | 77 |
| Proteases enzymes                          | 77 |
| Enzymes effective for lipids esterases and |    |
| lipases                                    | 77 |
| Industrial applications of enzymes         | 80 |
| References                                 | 82 |

#### 7 Potential of microbial extremophiles for biotechnological applications: An overview

Ashok Bankar, Smita Patil, Manisha Shinde, Shraddha Shinde, and Bhargavi Kowligi

| Introduction                                |  |
|---------------------------------------------|--|
| Ecology and classification of extremophiles |  |
| Thermophiles                                |  |

89 89 89

| Mesophiles                                | 90  |
|-------------------------------------------|-----|
| Psychrophiles                             | 91  |
| Acidophiles                               | 91  |
| Alkaliphiles                              | 91  |
| Halophiles                                | 92  |
| Piezophiles                               | 92  |
| Metallophiles                             | 92  |
| Xerophiles                                | 93  |
| Geophiles                                 | 93  |
| Applications of extremophiles             | 93  |
| Bioremediation                            | 93  |
| Plant growth promotion by extremophiles   | 96  |
| Potential applications of extremozymes    | 97  |
| Lipases production by extremophiles       | 97  |
| Proteases production by extremophiles     | 98  |
| Amylases production by extremophiles      | 98  |
| L-Glutaminase production by extremophiles | 99  |
| Beta-galactosidase production by          |     |
| extremophiles                             | 99  |
| Cellulase production by extremophiles     | 99  |
| Xylanases production by extremophiles     | 100 |
| Applications of extremolytes              | 100 |
| Acknowledgment                            | 101 |
| References                                | 101 |

### 8 Biomedical application of marine extremozymes

Govindan Nadar Rajivgandhi and Wen-Jun Li

| 111<br>112<br>114 |
|-------------------|
|                   |
| 114               |
|                   |
| 115               |
| 116               |
| rine              |
| 117               |
| 117               |
| 118               |
| 119               |
| 119               |
| 119               |
| 120               |
| <b>nes</b> 120    |
| 121               |
| 121               |
|                   |

### 9 Pharmaceutical application of extremozymes

Govindan Nadar Rajivgandhi, R.T.V. Vimala, S. Sridharan, Govindan Ramachandran, and Natesan Manoharan

| Introduction                    | 125 |
|---------------------------------|-----|
| Classification of extremophiles | 125 |

| Factors affecting the stability of the  |     |
|-----------------------------------------|-----|
| extremozymes                            | 127 |
| lonic interactions                      | 127 |
| Cooperative association                 | 128 |
| Solvent-exposed surface area            | 128 |
| Catalytic mechanisms                    | 128 |
| Alteration in amino acid residues       | 128 |
| Extremophilic enzymes versus mesophilic |     |
| enzymes                                 | 128 |
| Pharmaceutical applications of          |     |
| extremophilic enzymes                   | 128 |
| Tannases                                | 129 |
| Pullulanases                            | 129 |
| Chitinases                              | 129 |
| Esterase                                | 130 |
| Nitrile-degrading enzymes               | 130 |
| Proteases                               | 132 |
| Lipases                                 | 132 |
| Conclusion                              | 132 |
| References                              | 132 |

## 10 Extremozymes from extremophilic microorganisms as sources of bioremediation

#### Tarek A.A. Moussa and Neveen M. Khalil

| Introduction                      | 135 |
|-----------------------------------|-----|
| Bioremediation technology         | 136 |
| Extremophiles and extremozymes in |     |
| bioremediation                    | 138 |
| Conclusion                        | 142 |
| References                        | 142 |

### 11 Functionality of thermophilic bacteria as probiotics

Claudia Mariana Pérez-Juárez, Adriana Carolina Flores-Gallegos, Marisol Cruz-Requena, Aidé Sáenz-Galindo, Luis Cobos-Puc, and Raúl Rodríguez-Herrera

| Introduction                            | 147 |
|-----------------------------------------|-----|
| Probiotics                              | 147 |
| Thermophilic microorganisms             | 148 |
| Thermophilic probiotic characteristics  | 148 |
| Mesophilic vs thermophilic              |     |
| microorganisms                          | 149 |
| Importance                              | 150 |
| Industrial                              | 150 |
| Health                                  | 151 |
| Thermophilic strains used in industrial |     |
| processes                               | 152 |
| Bacillus coagulans                      | 153 |
| Streptococcus (GRAS)                    | 153 |
| Lactobacillus delbrueckii               | 153 |
|                                         |     |

| Food products with thermophilic probioti | <b>cs</b> 154 |
|------------------------------------------|---------------|
| Future perspectives                      | 156           |
| Conclusion                               | 157           |
| Acknowledgments                          | 157           |
| References                               | 157           |
|                                          |               |

#### 12 Current trends in applicability of thermophiles and thermozymes in bioremediation of environmental pollutants

#### Amrik Bhattacharya and Anshu Gupta

|    | Introduction                                                                | 161 |
|----|-----------------------------------------------------------------------------|-----|
|    | Adaptive or survival strategies of                                          |     |
|    | thermophiles                                                                | 162 |
|    | Adaptive strategies of thermophiles:                                        |     |
|    | Whole cell                                                                  | 162 |
|    | Adaptive strategies at the level of cellular                                |     |
|    | proteins and enzymes                                                        | 163 |
|    | Environmental applications of thermophiles                                  |     |
|    | and their enzymes                                                           | 164 |
|    | Remediation of heavy metals                                                 | 164 |
|    | Bioleaching and electronic waste recycling                                  | 166 |
|    | Remediation of polycyclic aromatic                                          |     |
|    | hydrocarbons and petroleum hydrocarbons                                     | 167 |
|    | Remediation of other recalcitrant organic                                   |     |
|    | pollutants                                                                  | 169 |
|    | Remediation of dyes and textile effluents                                   | 169 |
|    | Remediation of plastic and related                                          |     |
|    | compounds                                                                   | 170 |
|    | Remediation of pharmaceutically active                                      |     |
|    | compounds                                                                   | 170 |
|    | Use of thermophiles in treatment of other                                   |     |
|    | industrial wastes/effluents                                                 | 171 |
|    | Dairy wastewater                                                            | 171 |
|    | Leather and wood pulp processing                                            | 171 |
|    | Agroindustrial wastes/agrobiomass treatment                                 | 171 |
|    | Major issues on application of                                              |     |
|    | thermophiles/thermozymes in industrial                                      |     |
|    | wastes/effluents                                                            | 173 |
|    | Concluding remarks                                                          | 173 |
|    | References                                                                  | 173 |
| 13 | L-Asparaginases from<br>hyperthermophilic archaea and<br>their applications |     |
|    | Muhammad Sajed, Sabeel un Naeem,<br>and Naeem Rashid                        |     |
|    | Introduction                                                                | 177 |

| 177 |
|-----|
|     |
| 178 |
| 178 |
|     |

| In therapeutics  | 178 |
|------------------|-----|
| In biosensors    | 181 |
| In food industry | 182 |
| Conclusion       | 182 |
| References       | 183 |

#### 14 Psychrozymes: A novel and promising resource for industrial applications

#### U.S. Annapure and Nair Pratisha

| Introduction                                | 185 |
|---------------------------------------------|-----|
| Historical background of psychrophiles      | 185 |
| Biodiversity                                | 186 |
| Habitats                                    | 186 |
| Cryodefense strategies                      | 186 |
| Regulation of membrane fluidity             | 187 |
| Carotenoid pigments                         | 187 |
| Antifreeze, cold-acclimation, and           |     |
| cold-shock proteins                         | 187 |
| Cryoprotectants                             | 187 |
| Psychrozymes                                | 187 |
| Industrial applications of psychrozymes     | 188 |
| Pectinase                                   | 188 |
| β-Galactosidase                             | 188 |
| Cellulase                                   | 189 |
| Lipase                                      | 189 |
| Protease                                    | 190 |
| Amylase                                     | 190 |
| Phytase                                     | 191 |
| Xylanase                                    | 191 |
| Alkaline phosphatase                        | 191 |
| DNA ligase                                  | 192 |
| Uracil-DNA <i>N</i> -glycosylase and double |     |
| strand-specific DNase                       | 192 |
| Other notable enzymes                       | 192 |
| Manipulation of psychrozymes                | 192 |
| Commercially available psychrozymes         | 193 |
| Future prospects                            | 193 |
| References                                  | 194 |

### 15 Applications of extremozymes in the food industry

Aysegul Mutlu-Ingok, Derya Kahveci, Funda Karbancioglu-Guler, and Beraat Ozcelik

| Introduction                  | 197 |
|-------------------------------|-----|
| Pectinases from extremophiles | 199 |
| Amylases from extremophiles   | 200 |
| Lipases from extremophiles    | 201 |
| Proteases from extremophiles  | 201 |
| Lactases from extremophiles   | 202 |
| Conclusion                    | 203 |
| References                    | 203 |

#### 16 Extremophilic lipases and esterases: Characteristics and industrial applications

Agustín Castilla, Sonia Rodríguez Giordano, and Gabriela Irazoqui

| Introduction                                 | 207 |
|----------------------------------------------|-----|
| Lipases structural features                  | 208 |
| Enzyme catalytic mechanism                   | 209 |
| Structural features of extremophilic lipases | 209 |
| Biochemical properties of extremophilic      |     |
| lipases                                      | 210 |
| Extremophilic lipases through directed       |     |
| evolution                                    | 213 |
| Industrial applications of lipases: Current  |     |
| state and perspectives                       | 215 |
| References                                   | 218 |

#### 17 Current applications and future trends of extremozymes in detergent industries

Abdullah A. Al-Ghanayem, Babu Joseph, Mohammed S. Alhussaini, and Pramod W. Ramteke

| Introduction                        | 223 |
|-------------------------------------|-----|
| Extremozymes and detergents         | 223 |
| Lipase                              | 225 |
| Protease                            | 225 |
| Amylase                             | 225 |
| Pullulanase                         | 226 |
| Cellulase                           | 226 |
| Mannanase                           | 226 |
| Pectinases                          | 227 |
| Cutinase                            | 227 |
| Xylanase                            | 227 |
| Protein engineering in extremozymes | 227 |
| Future outlook                      | 228 |
| References                          | 228 |
|                                     |     |

#### 18 Bioenergy production in extremophiles

#### Mehwish Aslam and Naeem Rashid

| Introduction                            | 231 |  |  |
|-----------------------------------------|-----|--|--|
| Production of biofuels by extremophiles | 231 |  |  |
| Liquid biofuel producing extremophiles  | 232 |  |  |
| Gas biofuel producing extremophiles     | 238 |  |  |
| Extremophilic enzymes for bioenergy     |     |  |  |
| production                              | 238 |  |  |
| Multifunctional chimeras in biofuel     |     |  |  |
| production                              | 239 |  |  |
| Immobilization and recycling of enzymes |     |  |  |
| for biofuel production                  | 240 |  |  |
| Current and future prospects            | 240 |  |  |
| References                              | 240 |  |  |

#### 19 Enzyme engineering and application of extremozymes: A vast vision for the future

| Sukanchan    | Dalit |
|--------------|-------|
| SUKAIICIIAII | Pallt |

| Introduction                               | 247 |
|--------------------------------------------|-----|
| What do you mean by enzymes?               | 247 |
| What do you mean by extremozymes?          | 248 |
| Scientific doctrine of enzyme engineering  |     |
| and biotechnology                          | 248 |
| Significant advancements in enzyme         |     |
| engineering                                | 248 |
| Significant advancements in application of |     |
| extremozymes                               | 251 |
| Environmental remediation and enzyme       |     |
| engineering                                | 254 |
| Water and wastewater treatment and         |     |
| enzyme engineering                         | 255 |
| Enzyme engineering and science of          |     |
| sustainability                             | 256 |
| Future scientific thoughts and             |     |
| recommendations                            | 256 |
| Conclusion                                 | 256 |
| Acknowledgment                             | 257 |
| References                                 | 257 |

### 20 Metagenomics for mining of thermoalkalophilic enzymes

#### Garima Chauhan, Meghna Arya, Aparna Pathak, Prabhas Singh, and Monica Sharma

| Introduction                              | 259 |  |
|-------------------------------------------|-----|--|
| Timeline/history of metagenomics          | 259 |  |
| Sources of metagenome                     | 261 |  |
| Methodologies used in metagenomics        |     |  |
| Selection of sources/niches               | 261 |  |
| Isolation or extraction of environmental  |     |  |
| DNA                                       | 261 |  |
| Construction of the metagenomic library   | 261 |  |
| Screening of metagenomic libraries        | 261 |  |
| Approaches used in metagenomics libraries |     |  |
| screening                                 | 262 |  |
| Sequence-driven metagenomics              |     |  |
| approach                                  | 262 |  |
| Function (phenotypic)-driven              |     |  |
| metagenomics approach                     | 263 |  |
| Softwares used in metagenomics            | 263 |  |
| IDBA-UD                                   | 263 |  |
| MEGAHIT                                   | 264 |  |
| MetaSPAdes                                | 264 |  |
| MetaQUAST                                 | 264 |  |
| FastQC                                    | 264 |  |
| PRINTSEQ                                  | 264 |  |

| Meta-QC chain                       | 264 |
|-------------------------------------|-----|
| QIIME                               | 264 |
| MEGAN and CARMA                     | 264 |
| Thermo-alkalophilic enzymes         | 264 |
| The need for alkali-thermophilic    |     |
| enzymes                             | 265 |
| Applications of alkali-thermophilic |     |
| enzymes in various industries       | 265 |
| Enzymes used in the pulp and paper  |     |
| industry                            | 266 |
| Detergent industry                  | 266 |
| Enzymes used in the food industry   | 266 |
| Conclusion                          | 266 |
| Acknowledgments                     | 270 |
| References                          | 270 |

#### 21 Molecular mechanism of radio-resistance and heavy metal tolerance adaptation in microbes

Vikas Kumar, Asha Kumari, Mahima Pandey, and Monica Sharma

| Introduction                             | 275 |  |
|------------------------------------------|-----|--|
| Radio-resistant bacteria                 |     |  |
| Mechanism of survival in radio-resistant |     |  |
| organisms                                | 276 |  |
| Role of PprI-mediated DNA repair in      |     |  |
| Deinococcus radiodurans                  | 276 |  |
| RecA-dependent radioresistance in        |     |  |
| Deinococcus radiodurans                  | 276 |  |
| RecA-independent radioresistance in      |     |  |
| Deinococcus radiodurans                  | 276 |  |
| Role of manganese in protection against  |     |  |
| the oxidative damage                     | 277 |  |
| Unique morphology of radio-resistant     |     |  |
| organisms                                | 278 |  |
| Heavy metal resistance                   | 278 |  |
| Effect of heavy metals                   | 279 |  |
| Microbial detoxification strategies      | 282 |  |
| Biosorption                              | 282 |  |
| Bioaccumulation                          | 282 |  |
| Siderophore formation                    | 282 |  |
| Biosurfactants production                | 283 |  |
| Mechanism of metal resistant             | 283 |  |
| Extracellular barrier                    | 283 |  |
| Active transport of metal ions (efflux)  | 283 |  |
| Intracellular sequestration              | 284 |  |
| Extracellular sequestration              | 285 |  |
| Reduction of heavy metal ions by         |     |  |
| bacteria                                 | 285 |  |
| Conclusion                               | 287 |  |
| Acknowledgment                           | 287 |  |
| References                               | 287 |  |

| 22 | New <i>Biotech</i> tool from<br>Hot Sources: Thermostable |     | 23 Microbial nanotechnology: New horizons in food science and techn | ology |
|----|-----------------------------------------------------------|-----|---------------------------------------------------------------------|-------|
|    | self-labeling protein-tags<br>near to the boiling         |     | Nivas M. Desai, Varun E., and Pushpa S. Murthy                      |       |
|    | water                                                     |     | Introduction                                                        | 303   |
|    |                                                           |     | Synthesis of nanoparticles                                          | 303   |
|    | Rosanna Mattossovich                                      |     | Nanotechnology approaches for                                       |       |
| ė  | and Rosa Merlo                                            |     | sustainable food production                                         | 304   |
|    | Introduction                                              | 295 | Nanotechnology for safe food processing                             | 306   |
|    | From the DNA repair to the SNAP-tag                       |     | Nanoemulsions                                                       | 307   |
|    | technology                                                | 295 | Anticaking                                                          | 307   |
|    | Thermo-AGTs                                               | 297 | Antimicrobials and preservation                                     | 307   |
|    | Thermostable AGT from Saccharolobus                       |     | Biofilms and microbial food safety                                  | 308   |
|    | solfataricus                                              | 297 | Nanotechnology for safe food packaging                              |       |
|    | New fluorometric assay                                    | 297 | and labeling                                                        | 308   |
|    | SsOGT mutant-H <sup>5</sup> : New                         |     | Antimicrobials and food packaging                                   | 308   |
|    | thermophilic tag for biotechnological                     |     | Contaminant sensors                                                 | 309   |
|    | applications                                              | 298 | Nanotechnology for food and nutrition                               | 310   |
|    | Toward hyperthermophilic protein tags:                    |     | Conclusion                                                          | 310   |
|    | Pyrococcus furiosus and Thermotoga                        |     | References                                                          | 310   |
|    | Neapolitana AGTs                                          | 298 |                                                                     |       |
|    | References                                                | 299 | Index                                                               | 315   |

### Contributors

Numbers in paraentheses indicate the pages on which the authors' contrbutions begin.

- Vijayanand Adapa (39), Application Development Scientist, DuPont Industrial Biosciences, Hyderabad, India
- Abdullah A. Al-Ghanayem (223), Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia
- Mohammed S. Alhussaini (223), Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia
- **U.S. Annapure** (185), Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
- Meghna Arya (259), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Mehwish Aslam (9, 231) School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Ashok Bankar (89), Department of Microbiology, MES-Abasaheb Garware College, SP Pune University, Pune, India
- Naushin Bano (1), Department of Bioengineering, Integral University, Lucknow, India
- Aima Iram Batool (9), Department of Zoology, University of Sargodha, Sargodha, Pakistan
- Amrik Bhattacharya (161), University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- Agustín Castilla (207), Bioscience Department, Chemistry School, Universidad de la República, Montevideo, Uruguay
- Garima Chauhan (259), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India

- **Luis Cobos-Puc** (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- Marisol Cruz-Requena (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- Nivas M. Desai (303), Department of Botany, Shri Pancham Khemraj Mahavidyalaya, Sawantwadi, Maharashtra, India
- Muhammad Farhan Ul Haque (55), School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Adriana Carolina Flores-Gallegos (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- Sonia Rodríguez Giordano (207), Bioscience Department, Chemistry School, Universidad de la República, Montevideo, Uruguay
- Anshu Gupta (161), University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- Gabriela Irazoqui (207), Bioscience Department, Chemistry School, Universidad de la República, Montevideo, Uruguay
- **Babu Joseph** (223), Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia
- **Derya Kahveci** (197), Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- **Funda Karbancioglu-Guler** (197), Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Neveen M. Khalil (135), Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- **Bhargavi Kowligi** (89), Department of Microbiology, MES-Abasaheb Garware College, SP Pune University, Pune, India

- Mohammed Kuddus (1), Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
- Vikas Kumar (275), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Asha Kumari (275), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Wen-Jun Li (111), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
- Kauser Abdulla Malik (55), School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- Natesan Manoharan (125), Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- **Rosanna Mattossovich** (295), Institute of Biosciences and BioResources, National Research Council of Italy; Department of Biology, University of Naples "Federico II", Naples, Italy
- **Rosa Merlo** (295), Institute of Biosciences and BioResources, National Research Council of Italy; Department of Biology, University of Naples "Federico II", Naples, Italy
- **Tarek A.A. Moussa** (135), Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Salma Mukhtar (55), School of Biological Sciences, University of the Punjab; School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- **Pushpa S. Murthy** (303), CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- **Aysegul Mutlu-Ingok** (197), Department of Food Processing, Akcakoca Vocational School, Duzce University, Duzce, Turkey
- Hayrunnisa Nadaroglu (67), Department of Food Technology, Vocational College of Technical Science; Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, Turkey

- **Beraat Ozcelik** (197), Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University; Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Istanbul, Turkey
- Sukanchan Palit (247), Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India
- Mahima Pandey (275), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Aparna Pathak (259), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Smita Patil (89), Department of Microbiology, Camp Education Society's Arvind B. Telang Senior College of Arts, Commerce and Science, SP Pune University, Pune, India
- **Claudia Mariana Pérez-Juárez** (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- **Muhammed Seyid Polat** (67), Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, Turkey
- Paras Porwal (31), Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
- Nair Pratisha (185), Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
- **K.K. Pulicherla** (39), Department of Science and Technology, Government of India, Technology Bhavan, New Delhi, India
- Govindan Nadar Rajivgandhi (111, 125), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- **Govindan Ramachandran** (125), Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- **Pramod W. Ramteke** (223), Faculty of Life Sciences, Mandsaur University, Mandsaur, India
- **L.N. Ramya** (39), Department of Biotechnology, Acharya Nagarjuna University, Guntur, India

- Naeem Rashid (55, 177, 231), School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- **Muhammad Fayyaz ur Rehman** (9), Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
- **Raúl Rodríguez-Herrera** (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- **Roohi** (1), Department of Bioengineering, Integral University, Lucknow, India
- **Sabeel un Naeem** (177), Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Aidé Sáenz-Galindo (147), Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
- **Muhammad Sajed** (177), School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Abeera Shaeer (9), School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Monica Sharma (259, 275), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India

- Manisha Shinde (89), Department of Microbiology, MES-Abasaheb Garware College, SP Pune University, Pune, India
- Shraddha Shinde (89), Department of Microbiology, MES-Abasaheb Garware College, SP Pune University, Pune, India
- **Prabhas Singh** (259), Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Rachana Singh (31), Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
- **S. Sridharan** (125), Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Varun E. (303), CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- **R.T.V. Vimala** (125), Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

This page intentionally left blank

### Chapter 1

### Microbial screening for extremozymes

#### Mohammed Kuddus<sup>a</sup>, Roohi<sup>b</sup>, and Naushin Bano<sup>b</sup>

<sup>a</sup>Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia, <sup>b</sup>Department of Bioengineering, Integral University, Lucknow, India

#### Introduction

Biotechnology, an omnipresent and infinite potential field of biology, excitingly transforms our lives in many ways and has a great influence on various industries such as biofuel, feed and food production, and high value sustainable production of chemical compounds. Extremophiles are the organisms that can survive in extreme environments, and few extremozymes are initiating their mode into large-scale use in biotechnology. Many of the extremophiles that present in nature are an excellent source of auxiliary enzymes (Coker, 2016). The word extremophiles are derived from the Latin word "extremus" that means "extreme", and the Greek word "philia" means "love," which means an organism with the ability to thrive in extreme environments. The extremophiles are the most secretive group of life on Earth, and due to their unique properties, they can flourish in extreme habitats. Due to the metabolic strategies and inventive adaptations of extremophiles, they are feasible to survive in the extreme conditions (Elleuche et al., 2014).

#### What are extremozymes?

Extremophiles have made useful adaptations in their genetic and metabolic machinery to thrive in the hostile conditions. Extremozymes are very useful in research applications and for industrial processes due to their potential to persist under the unembellished surroundings, which are naturally employed to them. The new generation stable enzymes are in extensive demand because of their ability of changing or enhancing traditional chemical processes (Elleuche et al., 2014).

#### **Classification of extremophiles**

Extremophilic microorganisms are arranged by the conditions in which they develop. They can survive in many severe conditions like extreme hot and cold conditions, extreme salt concentrations and also in acid and alkaline niches and similarly the places where heavy metals, toxic waste, high pressure, organic solvents and other surroundings that are considered as unfriendly for lifecycle. Extremophiles can be categorized into diverse groups after considering the conditions that they inhabit (Dumorné et al., 2017) as shown in Fig. 1.1. The characteristics of different extremophiles based on their habitats and some examples are described in Table 1.1 (Capasso and Barboiu, 2019).

#### Thermophiles

Thermophiles are the class of extremophiles, and they can grow above 45°C in various regions of the Earth in geothermally high temperature like deep-sea hydrothermal vents, hot springs, decaying living matter, fermenting materials like compost piles and silage, where temperature ranges from 60°C to 65°C. Thermophiles are capable to grow between 41°C and 122°C and secrete various thermophilic enzymes like amylases, cellulases, lipases, mannanase, xylanases, pectinases, chitinases, proteases, esterases and phytases that have been majorly categorized. Thermophilic enzymes have the ability of accepting proteolysis and extreme circumstances, such as occurrence of denaturing agents and organic solvents and high salinity, and also they have the capacity to increase the amount of hydrophobic deposits, forming bisulfide liaison between two opposite ions (Dumorné et al., 2017; Jin et al., 2019).