
1

BANKING SYSTEM

A PROJECT REPORT

Submitted by

MD. ASIF KHAN

MAHBOOB ALAM

Under the Supervision of

Dr. JEELANI

in partial fulfillment for the award of the degree

of

Master of Computer Application

DEPARTMENT OF COMPUTER APPLICATION

INTEGRAL UNIVERSITY, LUCKNOW

JUNE 2023

i

INTEGRAL UNIVERSITY, LUCKNOW

CERTIFICATE

Certified that this project report “BANKING SYSTEM” is the bonafide

work of “MD. ASIF KHAN and MAHBOOB ALAM” who carried out the

project work under my supervision.

 Dr. Jeelani

 Project Guide

Deptt. of Computer Application

Integral University, Lucknow

ii

INTEGRAL UNIVERSITY, LUCKNOW

CERTIFICATE

Certified that this project report “BANKING SYSTEM” is the bonafide

work of “MD. ASIF KHAN and MAHBOOB ALAM” who have

successfully carried out the project.

Dr. Md. Faizan Farooqui

Project Coordinator

Deptt. of Computer Application

Integral University, Lucknow

Prof. Mohammad Faisal

Head

Deptt. of Computer Application

Integral University, Lucknow

iii

DECLARATION

I/We hereby declare that this submission is my/our own work and that, to the

best of my/our knowledge and belief, it contains no material previously

published or written by another person nor material which has been accepted

for the award of any other degree or diploma of the university or other institute

of higher learning, except where due acknowledgment has been made in the

text.

Date:

(MD. ASIF KHAN)

Enrolment No: 1800102795

(MAHBOOB ALAM)

Enrolment No: 1800103957

iv

ACKNOWLEDGEMENT

This is a great opportunity to acknowledge and thank all those persons without

whose support and help this project would have been impossible. We would

like to add a few heartfelt words for the people who were part of this project

in numerous ways.

I would like to thank my project guide Dr. JEELANI, for his indefatigable

guidance, valuable suggestions, moral support, constant encouragement and

contribution of time to the successful completion of project work. I am very

grateful to him, for providing all the facilities needed during the project

development. At the outset, I sincerely thank all faculty members of my

institution for their extra effort to make our session online inspire all ideas.

I thank my Counselor for his indispensable support and encouragement

throughout the project. I must also thank to respect Dr. MD. FAIZAN

FAROOQUI for his valuable suggestion while working on the project. I

would like to thank all those who helped me directly or indirectly.

Last but not least, I would like to acknowledge the ongoing support of my

parents and my family members, whose patience and encouragement during

these long days and nights have been paramount in making this project a

reality.

 Thank you

v

ABSTRACT

This project is aimed at developing an Online Banking for customer. The system is an

online application that can be accessed throughout the organization and outside as well

with proper login provided.

The project has been planned to be having the view of distributed architecture, with

centralized storage of the database. The application for the storage of the data has been

planned. Using the constructs of Oracle 10g and all the user interfaces have been designed

using the JAVA. The database connectivity is planned using the “Database” methodology.

The standards of security and data protective mechanism have been given a big choice for

proper usage. The application takes care of different modules and their associated reports,

which are produced as per the applicable strategies and standards that are put forwarded by

the administrative staff.

The entire project has been developed keeping in view of the distributed client server

computing technology, in mind. The specification has been normalized up to 3NF to

eliminate all the anomalies that may arise due to the database transaction that are executed

by the general users and the organizational administration. The internal database has been

selected as Oracle 10g.The basic constructs of table spaces, clusters and indexes have been

exploited to provide higher consistency and reliability for the data storage. The Oracle 10g

was a choice as it provides the constructs of high-level reliability and security. The total

front end was dominated using the HTML 5. At all proper levels high care was taken to

check that the system manages the data consistency with proper business rules or

validations. The database connectivity was planned using the latest “Database connection”

technology provided by Oracle. The authentication and authorization were crosschecked at

all the relevant stages. The user level accessibility has been restricted into two zones

namely.

vi

TABLE OF CONTENTS

Sr. No Title Page No.

 1. Certificate i-ii

 2. Declaration iii

3. Acknowledgment iv

 Abstract v

 Table of Contents vi

 List of Symbol vii

 List of Figure viii

 List of Tables ix

1. Chapter I: Introduction

 1.1 Introduction 1

 1.2 Objective of the Project 2

 1.3 H/W & S/W requirement 2-3

2. Chapter II: Problem Identification and Feasibility Study

 2.1 Problem Definition 4

 2.2 Feasibility Study 4-5

3. Chapter III: Resource Requirement

 3.1 Project Description 6-7

 3.2 Module Description 7-8

 3.3 System Design 8-9

 3.4 Normalization 9-10

 3.5 E-R Diagrams 10-12

 3.6 Rules Governing the DFD’S 13

 3.7 Data Flow Diagram 14-18

4. Chapter IV: Databases

 4.1 Introduction to SQL 19-20

 4.2 Database Table 20-22

5. Chapter V: Coding and Outputs 23-51

6. Chapter VI: System Testing and Implementation

 6.1 System testing and implementation 52-55

7. Chapter VII: Conclusion and Future Scope 56

 References x

 Bio data xi-xii

vii

LIST OF SYMBOLS

Sr. No. Title Page No.

1. Process that transforms data flow 15

2. Sources or Destination of data 15

3. Data flow 15

4. Data Store 15

viii

LIST OF FIGURES

Sr. No. Title Page No.

1. E-R Diagram for Create Account 12

2. E-R Diagram for Deposit and Withdraw 12

3. System Dataflow Diagram 15

4. 0 Level DFD of Banking System 16

5. 1 Level DFD of Banking System 17

6. Level 2 DFD Process-1 18

ix

LIST OF TABLES

Sr. No. Title Page No.

1. Create Account Table 20

4. Amount Table 21

5. Deposit Table 21

6. Loan Table 22

1

Chapter I

1. INTRODUCTION

1.1. Introduction

A Banking Management System is a software application that enables banks to manage

and streamline their day-to-day operations efficiently. It helps in automating tasks such as

customer account management, deposit management, loan management, and transaction

management. A Banking Management System can be a standalone application or a web-

based application that can be accessed by bank employees and customers through the

internet.

A Banking Management System major project involves designing and developing a

comprehensive software solution that caters to the various needs of a bank. The project

usually involves a team of developers, business analysts, and project managers who work

together to create a solution that meets the bank's requirements.

The main objectives of a Banking Management System major project are to provide a

secure, reliable, and scalable solution that can handle the demands of a modern banking

system. The system should be designed to improve operational efficiency, reduce costs,

and enhance customer satisfaction. Some of the key features of a Banking Management

System major project include:

1. Account Management: The system should allow bank employees to create, manage

and maintain customer accounts efficiently.

2. Deposit and Loan Management: The system should enable banks to manage

customer deposits and loans effectively.

3. Transaction Management: The system should support various types of transactions

such as online payments, fund transfers, and check processing.

4. Customer Relationship Management: The system should enable banks to maintain

a good relationship with their customers by providing personalized and efficient

service.

5. Reporting and Analytics: The system should generate reports and provide insights

into the bank's operations and performance.

2

1.2. Objective of the project

A Computer based management system is designed to handle all the primary information

required to calculate monthly statements of customer account which include monthly

statement of any month. Separate database is maintained to handle all the details required

for the correct statement calculation and generation.

This project intends to introduce more user friendliness in the various activities such as

record updation, maintenance, and searching. The searching of record has been made quite

simple as all the details of the customer can be obtained by simply keying in the

identification or account number of that customer. Similarly, record maintenance and

updation can also be accomplished by using the account number with all the details being

automatically generated. These details are also being promptly automatically updated in

the master file thus keeping the record absolutely up-to-date.

The main objective of our project is providing the different typed of customers facility, the

main objective of this system is to find out the actual customer service. Etc.

• It should fulfill almost all the process requirements of any Bank.

• It should increase the productivity of bank by utilizing the working hours more and

more, with minimum manpower.

This project includes the entire upgraded feature required for the computerization banking

system. This system is very easy to use, so that any user can use without getting pre-

knowledge about this. Its very much user friendly and meet almost all daily working

process requirements. This system is completely GUI based and can be use by mouse and

as well as keyboard. This system is melded in such a way that has got all features to upgrade

without making much change in existing components.

1.3. Hardware Requirements and Software Requirements

There are two types of requirements as follows:

1.3.1. Hardware Requirements

Hardware is a set of physical components, which performs the functions of applying

appropriate, predefined instructions. In other words, one can say that electronic and

mechanical parts of computer constitute hardware.

3

• Processor: Intel corei5 or higher.

• RAM: 8GB or higher.

• Hard Disk Space: 500GB or higher.

• Display: 1366 x 768 resolution or higher.

• Internet Connectivity: Broadband or high-speed internet.

1.3.2. Software Requirements

The software is a set of procedures of coded information or a program which when

fed into the computer hardware, enables the computer to perform the various tasks.

Software is like a current inside the wire, which cannot be seen but its effect can be

felt.

• Operating System: Windows 10 or higher.

• Java Development Kit (JDK): 8 or higher.

• Integrated Development Environment (IDE): Eclipse, NetBeans or IntelliJ

IDEA.

• Web Server: Apache Tomcat 8 or higher.

• Database Server: MYSQL or Oracle.

• JavaScript Libraries: jQuery, Bootstrap and AngularJS.

4

Chapter II

2. PROBLEM IDENTIFICATION &FEASIBILITY STUDY

2.1. Problem Definition

Before starting a major banking system project, it is essential to identify the problems faced

by the bank and its customers that the project aims to solve. Some of the common problems

faced by banks include:

1. Inefficient manual processes: Many banks still rely on manual processes, which are

time-consuming and error-prone, leading to delays and mistakes.

2. Lack of automation: Some banks do not have a centralized system for managing

customer data, account information, and transactions, which makes it difficult to

track and analyze data effectively.

3. Security concerns: As the banking industry moves towards digitalization, security

threats such as cyber-attacks and data breaches have become more prevalent,

leading to a loss of customer trust and financial losses.

4. Poor customer experience: Banks may struggle to provide a seamless and efficient

customer experience due to a lack of modern technology and outdated systems.

2.2. Feasibility Study

Understanding Feasibility: Feasibility study means the analysis of problem to determine

if It can be solved effectively. In other words, it is the study of the possibilities of the

proposed system it studies the work ability, impact on the organization ability to meet

user’s need and efficient use of resources. Three aspects in which the system has to be

feasible are: -

Economic Feasibility: The economic analysis checks for the high investment incurred on

the system. It evaluates development & implementing charges for the proposed “Banking

Project”. The S/W used for the development is easily available at minimal cost & the

database applied is freely available hence it results in low-cost implementation.

5

Technical Feasibility: This aspect concentrates on the concept of using Computer

Meaning, “Mechanization” of human works. Thus, the automated solution leads to the need

for a technical feasibility study. The focus on the platform used database management

&users for that S/W. The proposed system doesn’t require an in-depth technical knowledge

as the system development is simple and easy to understand. The S/W (VB.NET) used

makes the system user friendly (GUI). The result obtain should be true in the real time

conditions.

Behavioral Feasibility: Behavioral feasibility deals with the runtime performance of the

S/W the proposed system must score higher than the present in the behavioral study. The

S/W should have end user in mind when the system is designed while designing s/w the

programmer should be aware of the conditions user’s Knowledge input, output,

calculations etc. The s/w contains only a minimum no. of bugs. Care should be also taken

to avoid non-working means &t buttons.

6

Chapter III

3. RESOURCE REQUIREMENT

• IDE: NetBeans.

• Front End: JSP, SERVLET, JDBC, JavaScript.

• Programming Language: JAVA.

• Back End: MySQL.

3.1. Project Description

A banking system major project is a comprehensive software system that allows banks to

efficiently manage customer accounts and transactions. The system typically includes

several components, including customer interface, account management, transaction

processing, and security features.

The customer interface component provides a user-friendly platform for customers to

access their account information and perform various transactions such as opening savings

or current accounts, making deposits, withdrawals, transferring funds, paying bills,

applying for loans, and checking transaction history. The account management component

manages account data and updates account balances based on customer transactions. It also

includes features for updating account information, changing passwords, and setting up

automatic payments.

Transaction processing is an important component of the banking system major project as

it ensures that customer transactions are accurately recorded and updated in the system.

This component includes features for verifying account information, checking account

balances, and processing transactions such as deposits, withdrawals, transfers, and bill

payments.

Security features are also an essential component of the banking system major project as

they protect customer data and prevent unauthorized access to the system. Security features

may include user authentication, encryption of sensitive data, and monitoring of user

activity.

7

Overall, a banking system major project requires a thorough understanding of the project

requirements, careful planning and design, effective implementation, and rigorous testing.

Successful implementation of the project can provide numerous benefits to both the bank

and its customers, including increased efficiency, improved customer satisfaction, and

reduced costs.

3.2. Module Description

3.2.1 Create Account Module: This module allows bank employees to create new

customer accounts in the system. It typically includes features for capturing

customer details such as name, address, contact information, and identification

documents. The module also generates unique account numbers and handles the

verification and approval of new accounts.

3.2.2. Transfer Funds Module: This module allows customers to transfer money

between accounts. It includes features for selecting the source and destination

accounts, entering the transfer amount, and verifying the transaction details before

submitting it for processing. The module also handles the processing and

verification of the transfer transaction, ensuring that the transfer is completed

successfully.

3.2.3. Deposit Amount Module: This module allows customers to deposit money

into their accounts. It typically includes features for selecting the account to

deposit the money into, entering the deposit amount, and verifying the transaction

details before submitting it for processing. The module also handles the

processing and verification of the deposit transaction, ensuring that the deposit is

completed successfully.

3.2.4. Withdraw Amount Module: This module allows customers to withdraw

money from their accounts. It includes features for selecting the account to

withdraw money from, entering the withdrawal amount, and verifying the

transaction details before submitting it for processing. The module also handles the

processing and verification of the withdrawal transaction, ensuring that the

withdrawal is completed successfully.

8

3.2.5. Account Balance Module: This module allows customers to view their

account balance and transaction history. It includes features for selecting the

account to view the balance, displaying the current balance, and providing access

to transaction history, including deposits, withdrawals, and transfers.

Each of these modules is critical to the overall functionality of the banking

management system, and they must be designed and implemented with the highest

level of accuracy, security, and reliability to ensure the smooth operation of the

bank's financial transactions.

3.3. SYSTEM DESIGN

 3.3.1. Introduction

Software design sits at the technical kernel of the software engineering process and

is applied regardless of the development paradigm and area of application. Design

is the first step in the development phase for any engineered product or system. The

designer’s goal is to produce a model or representation of an entity that will later

be built. Beginning, once system requirement have been specified and analyzed,

system design is the first of the three technical activities -design, code and test that

is required to build and verify software.

The importance can be stated with a single word “Quality”. Design is the place

where quality is fostered in software development. Design provides us with

representations of software that can assess for quality. Design is the only way that

we can accurately translate a customer’s view into a finished software product or

system. Software design serves as a foundation for all the software engineering

steps that follow. Without a strong design we risk building an unstable system –

one that will be difficult to test, one whose quality cannot be assessed until the last

stage.

During design, progressive refinement of data structure, program structure, and

procedural details are developed reviewed and documented. System design can be

viewed from either technical or project management perspective. From the

9

technical point of view, design is comprised of four activities – architectural design,

data structure design, interface design and procedural design.

3.4. Normalization

It is a process of converting a relation to a standard form. The process is used to handle

the problems that can arise due to data redundancy i.e. repetition of data in the database,

maintain data integrity as well as handling problems that can arise due to insertion,

updation, deletion anomalies. Decomposing is the process of splitting relations into

multiple relations to eliminate anomalies and maintain anomalies and maintain data

integrity. To do this we use normal forms or rules for structuring relation.

• Insertion anomaly: Inability to add data to the database due to absence of other

data.

• Deletion anomaly: Unintended loss of data due to deletion of other data.

• Update anomaly: Data inconsistency resulting from data redundancy and partial

update

• Normal Forms: These are the rules for structuring relations that eliminate

anomalies.

3.4.1. First Normal Form

A relation is said to be in first normal form if the values in the relation are atomic

for every attribute in the relation. By this we mean simply that no attribute value

can be a set of values or, as it is sometimes expressed, a repeating group.

3.4.2. Second Normal Form:

A relation is said to be in second Normal form is it is in first normal form and it

should satisfy any one of the following rules.

1) Primary key is a not a composite primary key

2) No non key attributes are present

3) Every non key attribute is fully functionally dependent on full set of primary key.

10

3.4.3. Third Normal Form

A relation is said to be in third normal form if their exits no transitive dependencies.

Transitive Dependency: If two non-key attributes depend on each other as well as

on the primary key then they are said to be transitively dependent. The above

normalization principles were applied to decompose the data in multiple tables

thereby making the data to be maintained in a consistent state.

3.5. E-R Diagrams

ER-modeling is a data modeling technique used in software engineering to produce a

conceptual data model of a information system. Diagrams created using this ER-modeling

technique are called Entity-Relationship Diagrams, or ER diagrams or ERDs. So you can

say that Entity Relationship Diagrams illustrate the logical structure of databases.

Dr. Peter Chen is the originator of the Entity-Relationship Model. His original paper about

ER-modeling is one of the most cited papers in the computer software field. Currently the

ER model serves as the foundation of many system analysis and design methodologies,

computer-aided software engineering (CASE) tools, and repository systems.

The original notation for ER-Diagrams uses rectangles to represent entities, and diamonds

to represent relationships.

There are three basic elements in ER-Diagrams:

• Entities are the "things" for which we want to store information. An entity is a

person, place, thing or event.

• Attributes are the data we want to collect for an entity.

• Relationships describe the relations between the entities.

ERDs show entities in a database and relationships between tables within that database. It

is essential to have ER-Diagrams if you want to create a good database design. The

diagrams help focus on how the database actually works.

Entity (Instance): An instance of a physical object in the real world.

11

Entity Class: Group of objects of the same type

E.g., Entity Class “Student”, Entities “John”, “Trish” etc

Attributes: Properties of Entities that describe their characteristics.

Types:

1. Simple: Attribute that is not divisible, e.g., age.

2. Composite: Attribute composed of several simple attributes, e.g., address (house

number, street, district)

3. Multiple: Attribute with a set of possible values for the same entity, e.g., Phone

(home, mobile etc.) or email

4. Key: Uniquely Ids the Entity e.g., PPSN, Chassis No. Each simple attribute

associated with a VS that may be assigned to that attribute for each individual entity,

e.g., age = integer

12

E-R DIAGRAM FOR CREATE ACCOUNT

E-R DIAGRAM FOR DEPOSITE AND WITHDRAW

13

3.6. RULES GOVERNING THE DFD’S

3.6.1. Process

• No process can have only outputs.

• No process can have only inputs. If an object has only inputs than it must be a

sink.

• A process has a verb phrase label.

3.6.2. Data Store

• Data cannot move directly from one data store to another data store, a process

must move data.

• Data cannot move directly from an outside source to a data store, a process, which

receives, must move data from the source and place the data into data store

• A data store has a noun phrase label.

3.6.3. Source Or Sink

The origin and /or destination of data.

• Data cannot move direly from a source to sink it must be moved by a process.

• A source and /or sink has a noun phrase land.

3.6.4. Data Flow

• A Data Flow has only one direction of flow between symbols. It may flow in both

directions between a process and a data store to show a read before an update.

The latter is usually indicated however by two separate arrows since these happen

at different type.

• A join in DFD means that exactly the same data comes from any of two or more

different processes data store or sink to a common location.

• A data flow cannot go directly back to the same process it leads. There must be

atleast one other process that handles the data flow produce some other data flow

returns the original data into the beginning process.

• A Data flow to a data store means update (delete or change).

• A data Flow from a data store means retrieve or use.

14

3.7. Data Flow Diagram

A data flow diagram is graphical tool used to describe and analyze movement of data

through a system. These are the central tool and the basis from which the other components

are developed. The transformation of data from input to output, through processed, may

be described logically and independently of physical components associated with the

system. These are known as the logical data flow diagrams. The physical data flow

diagrams show the actual implements and movement of data between people, departments

and workstations. A full description of a system actually consists of a set of data flow

diagrams. Using two familiar notations Yourdon, Game and Sarson notation develops the

data flow diagrams. Each component in a DFD is labelled with a descriptive name. Process

is further identified with a number that will be used for identification purpose. The

development of DFD’S is done in several levels. Each process in lower-level diagrams can

be broken down into a more detailed DFD in the next level. The lop-level diagram is often

called context diagram. It consists a single process bit, which plays vital role in studying

the current system. The process in the context level diagram is exploded into other process

at the first level DFD.

The idea behind the explosion of a process into more process is that understanding at one

level of detail is exploded into greater detail at the next level. This is done until further

explosion is necessary and an adequate amount of detail is described for analyst to

understand the process.

Larry Constantine first developed the DFD as a way of expressing system requirements in

a graphical from, this led to the modular design.

A DFD is also known as a “bubble Chart” has the purpose of clarifying system

requirements and identifying major transformations that will become programs in system

design. So it is the starting point of the design to the lowest level of detail. A DFD consists

of a series of bubbles joined by data flows in the system.

3.7.1. DFD Symbols

In the DFD, there are four symbols

15

1. A square defines a source(originator) or destination of system data

2. An arrow identifies data flow. It is the pipeline through which the information flows

3. A circle or a bubble represents a process that transforms incoming data flow into

outgoing data flows.

4. An open rectangle is a data store, data at rest or a temporary repository of data

 Process that transforms data flow.

 Source or Destination of data

Data flow

Data Store

SYSTEM DATA FLOW DIAGRAM

BANKING

TRANSACTIONS
ACCOUNTS

HOLDERS

DATABASE

16

0 Level DFD

 Login Update

 Conformation Conformation

Explanation of the diagram:

• The main component is the "Banking System."

• The system interacts with two types of users: "User" and "Admin."

• Users can perform actions such as "Create Account," "Login," and "Perform

Actions."

• Admins can perform actions such as "Delete User" and "Login."

• The "Perform Actions" block represents various transactional activities like

deposit, withdraw, and fund transfer.

• Both users and admins interact with the "Database" component, which stores the

user and transaction information.

Banking

System
Customer

Manager

17

Level 1 DFD

(f)

 Reply

User

 2.0

 Login

System

 4.0

 Account

Transaction
Access

Access

Valid user

 Valid user

 Valid user

Online Banking

System

Database

 Administrator

(e)

 (g)

 (h)

 (i)

 (j)

Access

 1.0

Registration
Process

 Registration Info

Valid Administrator 7.0

Create and

Update

Process

 (k)

(l)

 Login_ Info

(m)

(n)

 3.0

 Account

 Opening

process

 User Details

Reply

(a)

 (b)

 (c)

 (d)

 6.0

Customer

Feed Back

 5.0

 Loan

18

Fig. Level 2 DFD process-1

 1.1

Registratio

n

Registration Info Verify data 1.2

Verificatio

n

Valid User

 1.3

 processing

registration

Register Info

Update

Login_Info

19

Chapter IV

4. DATABASE

A database is a structured collection of data organized and stored in a computer system. It

is designed to efficiently store, manage, retrieve, and update vast amounts of information.

A database serves as a central repository for storing data that can be accessed and

manipulated by various users or applications.

In a database, data is organized into tables, which consist of rows and columns. Each row

represents a record or an instance of data, while each column represents a specific attribute

or characteristic of the data. The tables are interrelated through relationships established

based on common data elements, known as keys.

The main purpose of a database is to provide a reliable, consistent, and secure means of

storing and retrieving data. It offers several advantages over traditional file-based systems,

such as data integrity, data independence, efficient data access, and concurrent data

sharing.

A Database Management System (DBMS) is software that facilitates the creation,

organization, and management of databases. It provides tools and functionalities for

defining the structure of the database, specifying data types, enforcing data integrity rules,

querying the data using a standardized language (e.g., SQL), and controlling user access to

the data.

Databases are widely used in various industries and applications, including business

operations, e-commerce, finance, healthcare, telecommunications, and more. They play a

crucial role in data-driven decision-making, information storage, and retrieval, as well as

supporting complex data processing tasks.

4.1. Introduction to SQL

 SQL is a standard computer language for accessing and manipulating databases.

• SQL stands for Structured Query Language.

• SQL allows you to access a database.

• SQL is an ANSI standard computer language.

20

• SQL can execute queries against a database.

• SQL can retrieve data from a database.

• SQL can insert new records in a database.

• SQL can delete records from a database.

• SQL can update records in a database.

• SQL is easy to learn.

➢ SQL is an ANSI (American National Standards Institute) standard computer language

for accessing and manipulating database systems. SQL statements are used to retrieve

and update data in a database. SQL works with database programs like MS Access,

DB2, Informix, MS SQL Server, Oracle, Sybase, etc.

➢ Unfortunately, there are many different versions of the SQL language, but to be in

compliance with the ANSI standard; they must support the same major keywords in a

similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and

others).

4.2. Database Table:

Table 1: Create account table

Column name Data type Nullable Primary key

ACCOUNTINFO Number No Yes

USERNAME Varchar2 Yes No

PASSWORD Varchar2 Yes No

AMOUNT Varchar2 Yes No

ADDRESS Varchar2 Yes No

PHONE Varchar2 Yes No

21

Table 2: Amount Table

Table 3: Deposit Table

22

Table 4: Loan table

23

Chapter V

5. OUTPUTS AND CODING

CreateAccountServlet

package com.online_banking;

import java.io.IOException;

import java.io.PrintWriter;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Random;

import com.online_banking.model.AccountModel;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

public class CreateAccountServlet extends HttpServlet {

 String account_no, first_name, last_name, address, city, branch, zip, username, password,

re_password,

 phone_number, email, account_type;

 String amount;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 first_name = request.getParameter("first_name");

 last_name = request.getParameter("last_name");

 address = request.getParameter("address");

 city = request.getParameter("city");

 branch = request.getParameter("branch");

 zip = request.getParameter("zip");

 username = request.getParameter("username");

 password = request.getParameter("password");

 re_password = request.getParameter("re_password");

 phone_number = request.getParameter("phone");

 email = request.getParameter("email");

 account_type = request.getParameter("account_type");

 amount =request.getParameter("amount");

 // Generating account number

 Random rand = new Random();

 int random_num = 100000 + rand.nextInt(999999);

24

 account_no = first_name.substring(0, 2) + last_name.substring(0, 2) +

random_num;

 System.out.println(account_no);

 //Getting Current date

 DateFormat df = new SimpleDateFormat("dd/MM/yyyy");

 String reg_date = df.format(new Date());

 // Setting all variables to model class

 AccountModel am = new AccountModel();

 am.setAccount_no(account_no);

 am.setFirst_name(first_name);

 am.setLast_name(last_name);

 am.setAddress(address);

 am.setCity(city);

 am.setBranch(branch);

 am.setZip(zip);

 am.setUsername(username);

 am.setPassword(password);

 am.setPhone_number(phone_number);

 am.setEmail(email);

 am.setAccount_type(account_type);

 am.setAmount(amount);

 am.setReg_date(reg_date);

 if (password.equals(re_password)) {

 request.setAttribute("Account_details", am);

 RequestDispatcher rd =

request.getRequestDispatcher("create_account_progress.jsp");

 rd.forward(request, response);

 } else {

 request.setAttribute("not_match", "yes");

 RequestDispatcher rd =

request.getRequestDispatcher("create_account.jsp");

 rd.forward(request, response);

 }

 }

}

DepositSchemeServlet
package com.online_banking;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import com.online_banking.database.DatabaseOperations;

import com.online_banking.database.JDBC_Connect;

import com.online_banking.model.AccountModel;

25

import com.online_banking.model.DepositSchemeModel;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

public class DepositSchemeServlet extends HttpServlet {

 String account_no, deposit_amount, value;

 int year, interest_rate, amount;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 account_no = request.getParameter("account_no");

 year = Integer.parseInt(request.getParameter("year"));

 interest_rate = Integer.parseInt(request.getParameter("interest_rate"));

 deposit_amount = request.getParameter("deposit_amount");

 value = request.getParameter("value");

 if (deposit_amount.equals("1,00,000৳")) {

 amount = 100000;

 } else if (deposit_amount.equals("3,00,000৳")) {

 amount = 300000;

 } else if (deposit_amount.equals("5,00,000৳")) {

 amount = 500000;

 }

 DepositSchemeModel dpModel = new DepositSchemeModel();

 dpModel.setAccount_no(account_no);

 dpModel.setYear(year);

 dpModel.setInterest_rate(interest_rate);

 dpModel.setAmount(amount);

 dpModel.setValue(value);

 try {

 JDBC_Connect connect = new JDBC_Connect();

 Connection conn = connect.getConnection();

 DatabaseOperations operations = new DatabaseOperations();

 AccountModel am = operations.getAccountDetails(conn,

account_no);

 if (Integer.parseInt(am.getAmount()) >= amount) {

 int main_amount = Integer.parseInt(am.getAmount())- amount;

 PreparedStatement ps = conn.prepareStatement("update amount

set amount=? where id= ?");

26

 ps.setInt(1, main_amount);

 ps.setString(2, account_no);

 ps.executeUpdate();

 boolean allRight = operations.insertDepositScheme(dpModel);

 request.setAttribute("DepositScheme", dpModel);

 request.setAttribute("allRight", allRight);

 RequestDispatcher rd =

request.getRequestDispatcher("deposit_scheme_progress.jsp");

 rd.forward(request, response);

 } else {

 request.setAttribute("Not_Enough", "Yes");

 RequestDispatcher rd =

request.getRequestDispatcher("single_deposit_scheme.jsp?value=" + value);

 rd.forward(request, response);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

DepositServlet
package com.online_banking;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import com.online_banking.database.JDBC_Connect;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import java.util.logging.Level;

import java.util.logging.Logger;

public class DepositServlet extends HttpServlet {

 String account_no, username, password;

 Connection conn;

 Statement stmt;

 boolean pass_wrong = false;

27

 int current_amount, deposit_amount;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 account_no = request.getParameter("account_no");

 username = request.getParameter("username");

 password = request.getParameter("password");

 deposit_amount = Integer.parseInt(request.getParameter("amount"));

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from account where id='" +

account_no + "' and username='" + username

 + "' and password='" + password + "'");

 if (!rs.isBeforeFirst()) {

 request.setAttribute("isPassOK", "No");

 RequestDispatcher rd =

request.getRequestDispatcher("deposit.jsp");

 rd.forward(request, response);

 } else {

 System.out.println("I am in");

 ResultSet rs1 = stmt.executeQuery("select * from amount where

id ='" + account_no + "'");

 while (rs1.next()) {

 current_amount = rs1.getInt(2);

 System.out.println(current_amount);

 }

 current_amount += deposit_amount;

 PreparedStatement ps = conn.prepareStatement("update amount

set amount=? where id= ?");

 ps.setInt(1, current_amount);

 ps.setString(2, account_no);

 ps.executeUpdate();

 conn.close();

 RequestDispatcher rd =

request.getRequestDispatcher("Deposit_process.jsp");

 rd.forward(request, response);

 }

28

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 e.printStackTrace();

 } catch (Exception ex) {

 Logger.getLogger(DepositServlet.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

JakartaRestConfiguration

package com.online_banking;

import jakarta.ws.rs.ApplicationPath;

import jakarta.ws.rs.core.Application;

/**

 * Configures Jakarta RESTful Web Services for the application.

 * @author Juneau

 */

@ApplicationPath("resources")

public class JakartaRestConfiguration extends Application {

}

LoanServlet

package com.online_banking;

import java.io.IOException;

import com.online_banking.database.DatabaseOperations;

import com.online_banking.model.LoanModel;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

public class LoanServlet extends HttpServlet {

 int loan_amount;

 String account_no, first_name, last_name, address, email;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 account_no = request.getParameter("account_no");

 loan_amount = Integer.parseInt(request.getParameter("loan_amount"));

 first_name = request.getParameter("first_name");

 last_name = request.getParameter("last_name");

29

 address = request.getParameter("address");

 email = request.getParameter("email");

 LoanModel lModel = new LoanModel();

 lModel.setAccount_no(account_no);

 lModel.setFirst_name(first_name);

 lModel.setLast_name(last_name);

 lModel.setAddress(address);

 lModel.setEmail(email);

 lModel.setLoan_amount(loan_amount);

 lModel.setStatus("pending");

 try {

 DatabaseOperations operations = new DatabaseOperations();

 boolean check = operations.insertLoanDetails(lModel);

 if (check) {

 RequestDispatcher rd = request.getRequestDispatcher("loan_process.jsp");

 request.setAttribute("loan_details", lModel);

 rd.forward(request, response);

 } else {

 RequestDispatcher rd = request.getRequestDispatcher("loan_process.jsp");

 request.setAttribute("error", "yes");

 rd.forward(request, response);

 }

 } catch (Exception e) {

 }

 }

}

LoginServlet

package com.online_banking;

import java.io.IOException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import com.online_banking.database.JDBC_Connect;

import com.online_banking.model.AccountModel;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import jakarta.servlet.http.HttpSession;

import java.util.logging.Level;

import java.util.logging.Logger;

30

public class LoginServlet extends HttpServlet {

 String UserName, password;

 Connection conn;

 Statement stmt;

 AccountModel am = null;

 boolean pass_wrong = false;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 UserName = request.getParameter("UserName");

 password = request.getParameter("password");

 System.out.println(UserName);

 System.out.println(password);

 try {

 // Getting database connection

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(

 "select * from account where username ='" + UserName + "'" + "and password='" +

password + "'");

 if (!rs.isBeforeFirst()) {

 request.setAttribute("isPassOK", "No");

 RequestDispatcher rd = request.getRequestDispatcher("login.jsp");

 rd.forward(request, response);

 } else {

 while (rs.next()) {

 pass_wrong = true;

 // Setting all variables to model class

 am = new AccountModel();

 am.setAccount_no(rs.getString(1));

 am.setFirst_name(rs.getString(2));

 am.setLast_name(rs.getString(3));

 am.setAddress(rs.getString(4));

 am.setCity(rs.getString(5));

 am.setBranch(rs.getString(6));

 am.setZip(rs.getString(7));

 am.setUsername(rs.getString(8));

 am.setPassword(rs.getString(9));

 am.setPhone_number(rs.getString(10));

 am.setEmail(rs.getString(11));

 am.setAccount_type(rs.getString(12));

 am.setReg_date(rs.getString(13));

31

 ResultSet rs1 = stmt.executeQuery("select * from amount where id ='" +

am.getAccount_no() + "'");

 while (rs1.next()) {

 am.setAmount(rs1.getString(2));

 }

 // Setting Session variable for current User

 HttpSession session = request.getSession();

 session.setAttribute("userDetails", am);

 RequestDispatcher rd = request.getRequestDispatcher("home.jsp");

 rd.forward(request, response);

 }

 }

 } catch (SQLException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (Exception ex) {

 Logger.getLogger(LoginServlet.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

TransferServlet

package com.online_banking;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.logging.Level;

import java.util.logging.Logger;

import com.online_banking.database.JDBC_Connect;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

public class TransferServlet extends HttpServlet {

 String account_no, username, target_acc_no, password;

 Connection conn;

 PreparedStatement stmt, stmt1, stmt2, stmt3;

 int own_amount, transfer_amount, recipient_amount;

32

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 account_no = request.getParameter("account_no");

 username = request.getParameter("username");

 target_acc_no = request.getParameter("target_acc_no");

 password = request.getParameter("password");

 transfer_amount = Integer.parseInt(request.getParameter("amount"));

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 stmt = conn.prepareStatement("select * from account where id=? and username=? and

password=?");

 stmt.setString(1, account_no);

 stmt.setString(2, username);

 stmt.setString(3, password);

 ResultSet rsOwn = stmt.executeQuery();

 stmt1 = conn.prepareStatement("select * from account where id=?");

 stmt1.setString(1, target_acc_no);

 ResultSet rstTarget = stmt1.executeQuery();

 if (!rsOwn.isBeforeFirst() && !rstTarget.isBeforeFirst()) {

 request.setAttribute("isPassOK", "No");

 RequestDispatcher rd = request.getRequestDispatcher("transfer.jsp");

 rd.forward(request, response);

 } else {

 System.out.println("I am in");

 try (PreparedStatement rs1 = conn.prepareStatement("select * from amount where id

=?")) {

 rs1.setString(1, account_no);

 ResultSet rs1Result = rs1.executeQuery();

 while (rs1Result.next()) {

 own_amount = rs1Result.getInt(2);

 }

 }

 if (own_amount >= transfer_amount) {

 own_amount -= transfer_amount;

 try (PreparedStatement rs2 = conn.prepareStatement("select * from amount where id

=?")) {

 rs2.setString(1, target_acc_no);

 ResultSet rs2Result = rs2.executeQuery();

 while (rs2Result.next()) {

 recipient_amount = rs2Result.getInt(2);

33

 }

 }

 recipient_amount += transfer_amount;

 try (PreparedStatement ps = conn.prepareStatement("update amount set amount=?

where id= ?");

 PreparedStatement ps1 = conn.prepareStatement("update amount set amount=?

where id= ?")) {

 ps.setInt(1, own_amount);

 ps.setString(2, account_no);

 ps.executeUpdate();

 ps1.setInt(1, recipient_amount);

 ps1.setString(2, target_acc_no);

 ps1.executeUpdate();

 }

 conn.close();

 RequestDispatcher rd = request.getRequestDispatcher("transfer_process.jsp");

 rd.forward(request, response);

 } else {

 conn.close();

 request.setAttribute("EnoughMoney", "No");

 RequestDispatcher rd = request.getRequestDispatcher("transfer.jsp");

 rd.forward(request, response);

 }

 }

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 } catch (Exception ex) {

 Logger.getLogger(TransferServlet.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

WithdrawServlet

package com.online_banking;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

34

import com.online_banking.database.JDBC_Connect;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import java.util.logging.Level;

import java.util.logging.Logger;

public class WithdrawServlet extends HttpServlet {

 String account_no, username, password;

 Connection conn;

 Statement stmt;

 boolean pass_wrong = false;

 int current_amount, withdraw_amount;

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 account_no = request.getParameter("account_no");

 username = request.getParameter("username");

 password = request.getParameter("password");

 withdraw_amount = Integer.parseInt(request.getParameter("amount"));

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from account where id='" +

account_no + "' and username='"

 + username + "' and password='" + password + "'");

 if (!rs.isBeforeFirst()) {

 request.setAttribute("isPassOK", "No");

 RequestDispatcher rd =

request.getRequestDispatcher("withdraw.jsp");

 rd.forward(request, response);

 } else {

 System.out.println("I am in");

 ResultSet rs1 = stmt.executeQuery("select * from amount where

id ='" + account_no + "'");

 while (rs1.next()) {

 current_amount = rs1.getInt(2);

 System.out.println(current_amount);

 }

35

 if (current_amount >= withdraw_amount) {

 current_amount -= withdraw_amount;

 PreparedStatement ps = conn.prepareStatement("update

amount set amount=? where id= ?");

 ps.setInt(1, current_amount);

 ps.setString(2, account_no);

 ps.executeUpdate();

 conn.close();

 RequestDispatcher rd =

request.getRequestDispatcher("Withdraw_process.jsp");

 rd.forward(request, response);

 } else {

 conn.close();

 request.setAttribute("EnoughMoney", "No");

 RequestDispatcher rd =

request.getRequestDispatcher("withdraw.jsp");

 rd.forward(request, response);

 }

 }

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 e.printStackTrace();

 } catch (Exception ex) {

 Logger.getLogger(WithdrawServlet.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

WEB-XML

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"

 version="6.0">

 <session-config>

 <session-timeout>

 30

 </session-timeout>

 </session-config>

 <servlet>

 <servlet-name>CreateAccount</servlet-name>

36

 <servlet-class>com.online_banking.CreateAccountServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>CreateAccount</servlet-name>

 <url-pattern>/CreateAccountServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>com.online_banking.LoginServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Login</servlet-name>

 <url-pattern>/LoginServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>Deposit</servlet-name>

 <servlet-class>com.online_banking.DepositServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Deposit</servlet-name>

 <url-pattern>/DepositServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>Withdraw</servlet-name>

 <servlet-class>com.online_banking.WithdrawServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Withdraw</servlet-name>

 <url-pattern>/WithdrawServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>Transfer</servlet-name>

 <servlet-class>com.online_banking.TransferServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Transfer</servlet-name>

 <url-pattern>/TransferServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-name>Loan</servlet-name>

 <servlet-class>com.online_banking.LoanServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Loan</servlet-name>

 <url-pattern>/LoanServlet</url-pattern>

 </servlet-mapping>

37

 <servlet>

 <servlet-name>DepositScheme</servlet-name>

 <servlet-class>com.online_banking.DepositSchemeServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>DepositScheme</servlet-name>

 <url-pattern>/DepositSchemeServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>home.jsp</welcome-file>

 </welcome-file-list>

</web-app>

JDBC_Connection

package com.online_banking.database;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class JDBC_Connect {

 Connection connection = null;

 public Connection getConnection() throws Exception {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 connection =

DriverManager.getConnection("jdbc:mysql://localhost:3306/online_banking", "root", "Asif123");

 } catch (SQLException e) {

 System.out.println("SQLException: " + e.getMessage());

 System.out.println("SQLState: " + e.getSQLState());

 System.out.println("VendorError: " + e.getErrorCode());

 }

 return connection;

 }

}

DatabaseOperations.java

package com.online_banking.database;

38

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import com.online_banking.model.AccountModel;

import com.online_banking.model.DepositSchemeModel;

import com.online_banking.model.LoanModel;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

public class DatabaseOperations {

 Connection conn;

 int count1, count2;

 public boolean insertAccountDetails(AccountModel model) throws Exception {

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 PreparedStatement ps1 = conn.prepareStatement("insert into

account(id,first_name,last_name,address,city,"

 +

"branch,zip,username,password,phone,email,account_type,reg_date) values('" +

model.getAccount_no()

 + "','" + model.getFirst_name() + "','" +

model.getLast_name() + "','" + model.getAddress() + "','"

 + model.getCity() + "','" + model.getBranch() + "','" +

model.getZip() + "','" + model.getUsername()

 + "','" + model.getPassword() + "','" +

model.getPhone_number() + "','" + model.getEmail() + "','"

 + model.getAccount_type() + "','" +

model.getReg_date() + "')");

 count1 = ps1.executeUpdate();

 System.out.println("Inserted " + count1 + " row");

 PreparedStatement ps2 = conn.prepareStatement("insert into

amount(id,amount) values('"

 + model.getAccount_no() + "','" + model.getAmount() +

"')");

 count2 = ps2.executeUpdate();

 System.out.println("Inserted " + count2 + " row");

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

39

 return ((count1 > 0) && (count2 > 0));

 }

 public boolean insertLoanDetails(LoanModel model) throws Exception {

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 PreparedStatement ps1 = conn

 .prepareStatement("insert into

loan(id,amount,status,first_name,last_name,address,email) values('"

 + model.getAccount_no() + "','" +

model.getLoan_amount() + "','" + model.getStatus() + "','"

 + model.getFirst_name() + "','" +

model.getLast_name() + "','" + model.getAddress() + "','"

 + model.getEmail() + "')");

 count1 = ps1.executeUpdate();

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return (count1 > 0);

 }

 public AccountModel getAccountDetails(Connection conn, String account_no) throws

Exception {

 AccountModel am = new AccountModel();

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from account where id ='" +

account_no + "'");

 while (rs.next()) {

 // Setting all variables to model class

 am = new AccountModel();

 am.setAccount_no(rs.getString(1));

 am.setFirst_name(rs.getString(2));

 am.setLast_name(rs.getString(3));

 am.setAddress(rs.getString(4));

 am.setCity(rs.getString(5));

 am.setBranch(rs.getString(6));

 am.setZip(rs.getString(7));

 am.setUsername(rs.getString(8));

 am.setPassword(rs.getString(9));

 am.setPhone_number(rs.getString(10));

 am.setEmail(rs.getString(11));

 am.setAccount_type(rs.getString(12));

 am.setReg_date(rs.getString(13));

40

 }

 ResultSet rs1 = stmt.executeQuery("select * from amount where id ='" +

am.getAccount_no() + "'");

 while (rs1.next()) {

 am.setAmount(rs1.getString(2));

 }

 return am;

 }

 public boolean insertDepositScheme(DepositSchemeModel model) throws Exception {

 try {

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 // getting current date

 DateFormat dateFormat = new

SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

 Date date = new Date();

 String current_time = dateFormat.format(date);

 PreparedStatement ps1 = conn

 .prepareStatement("insert into

deposit(id,year,interest,amount,deposit_date) values('"

 + model.getAccount_no() + "','" +

model.getYear() + "','" + model.getInterest_rate() + "','"

 + model.getAmount() + "','" +

current_time + "')");

 count1 = ps1.executeUpdate();

 System.out.println("Inserted " + count1 + " row");

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return ((count1 > 0));

 }

 public ArrayList<LoanModel> getLoanList(Connection conn) throws Exception {

 ArrayList<LoanModel> loanList = new ArrayList<>();

 LoanModel loanModel;

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from loan where status='pending'");

 while (rs.next()) {

 loanModel = new LoanModel();

 loanModel.setAccount_no(rs.getString(1));

 loanModel.setLoan_amount(rs.getInt(2));

 loanModel.setStatus(rs.getString(3));

 loanModel.setFirst_name(rs.getString(4));

41

 loanModel.setLast_name(rs.getString(5));

 loanModel.setAddress(rs.getString(6));

 loanModel.setEmail(rs.getString(7));

 loanList.add(loanModel);

 }

 return loanList;

 }

 public void UpdateAmount(String account_no, int loan_amount) throws SQLException,

Exception {

 int current_amount = 0;

 JDBC_Connect connect = new JDBC_Connect();

 conn = connect.getConnection();

 Statement stmt = conn.createStatement();

 ResultSet rs1 = stmt.executeQuery("select * from amount where id ='" +

account_no + "'");

 while (rs1.next()) {

 current_amount = rs1.getInt(2);

 }

 current_amount += loan_amount;

 // Updating Loan amount

 PreparedStatement ps = conn.prepareStatement("update amount set amount=?

where id= ?");

 ps.setInt(1, current_amount);

 ps.setString(2, account_no);

 ps.executeUpdate();

 PreparedStatement ps1 = conn.prepareStatement("update loan set status=? where

id= ?");

 ps1.setString(1, "success");

 ps1.setString(2, account_no);

 ps1.executeUpdate();

 conn.close();

 }

}

AccountModel.java

package com.online_banking.model;

42

public class AccountModel {

 private String account_no;

 private String first_name;

 private String last_name;

 private String address;

 private String city;

 private String branch;

 private String zip;

 private String username;

 private String password;

 private String phone_number;

 private String email;

 private String account_type;

 private String reg_date;

 private String amount;

 public String getAccount_no() {

 return account_no;

 }

 public void setAccount_no(String account_no) {

 this.account_no = account_no;

 }

 public String getFirst_name() {

 return first_name;

 }

 public void setFirst_name(String first_name) {

 this.first_name = first_name;

 }

 public String getLast_name() {

 return last_name;

 }

 public void setLast_name(String last_name) {

 this.last_name = last_name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 public String getCity() {

 return city;

43

 }

 public void setCity(String city) {

 this.city = city;

 }

 public String getBranch() {

 return branch;

 }

 public void setBranch(String branch) {

 this.branch = branch;

 }

 public String getZip() {

 return zip;

 }

 public void setZip(String zip) {

 this.zip = zip;

 }

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

 public String getPhone_number() {

 return phone_number;

 }

 public void setPhone_number(String phone_number) {

 this.phone_number = phone_number;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

44

 this.email = email;

 }

 public String getAccount_type() {

 return account_type;

 }

 public void setAccount_type(String account_type) {

 this.account_type = account_type;

 }

 public String getReg_date() {

 return reg_date;

 }

 public void setReg_date(String reg_date) {

 this.reg_date = reg_date;

 }

 public String getAmount() {

 return amount;

 }

 public void setAmount(String amount) {

 this.amount = amount;

 }

 @Override

 public String toString() {

 return "AccountModel{" + "account_no=" + account_no + ", first_name=" + first_name + ",

last_name=" + last_name + ", address=" + address + ", city=" + city + ", branch=" + branch + ",

zip=" + zip + ", username=" + username + ", password=" + password + ", phone_number=" +

phone_number + ", email=" + email + ", account_type=" + account_type + ", reg_date=" +

reg_date + ", amount=" + amount + '}';

 }

}

45

Home Page

46

Registration Form

Login

47

Withdraw Form

Transfer Form

48

Loan Request

Deposit Scheme

49

Silver Deposit Scheme

Profile

50

Sign out

Admin Login

51

Warning message

Loan Request Success

52

Chapter VI

6. SYSTEM TESTING AND IMPLEMENTATION

6.1. Introduction

Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design and coding. In fact, testing is the one step in the

software engineering process that could be viewed as destructive rather than constructive.

A strategy for software testing integrates software test case design methods into a well-

planned series of steps that result in the successful construction of software. Testing is the

set of activities that can be planned in advance and conducted systematically. The

underlying motivation of program testing is to affirm software quality with methods that

can economically and effectively apply to both strategic to both large and small-scale

systems.

6.2. Strategic Approach to Software Testing

The software engineering process can be viewed as a spiral. Initially system engineering

defines the role of software and leads to software requirement analysis where the

information domain, functions, behaviour, performance, constraints and validation criteria

for software are established. Moving inward along the spiral, we come to design and finally

to coding. To develop computer software, we spiral in along streamlines that decrease the

level of abstraction on each turn.

A strategy for software testing may also be viewed in the context of the spiral. Unit testing

begins at the vertex of the spiral and concentrates on each unit of the software as

implemented in source code. Testing progress by moving outward along the spiral to

integration testing, where the focus is on the design and the construction of the software

architecture. Talking another turn on outward on the spiral we encounter validation testing

where requirements established as part of software requirements analysis are validated

against the software that has been constructed. Finally, we arrive at system testing, where

the software and other system elements are tested as a whole.

53

6.2.1. Unit Testing

Unit testing focuses verification effort on the smallest unit of software design, the module.

The unit testing we have is white box oriented and some modules the steps are conducted

in parallel.

6.2.2. White Box Testing

This type of testing ensures that

• All independent paths have been exercised at least once

• All logical decisions have been exercised on their true and false sides

• All loops are executed at their boundaries and within their operational bounds

• All internal data structures have been exercised to assure their validity.

 UNIT TESTING

 MODULE TESTING

 SUB-SYSTEM TESING

 SYSTEM TESTING

ACCEPTANCE TESTING

Component Testing

Integration Testing

User Testing

54

6.2.3. Basic Path Testing

Established technique of flow graph with Cyclomatic complexity was used to derive test

cases for all the functions. The main steps in deriving test cases were:Use the design of the

code and draw correspondent flow graph.

6.2.4. Conditional Testing

In this part of the testing each of the conditions were tested to both true and false aspects.

And all the resulting paths were tested. So that each path that may be generate on particular

condition is traced to uncover any possible errors.

6.2.5. Data Flow Testing

This type of testing selects the path of the program according to the location of definition

and use of variables. This kind of testing was used only when some local variable were

declared. The definition-use chain method was used in this type of testing. These were

particularly useful in nested statements.

6.2.6. Loop Testing

In this type of testing all the loops are tested to all the limits possible. The following

exercise was adopted for all loops:

• All the loops were tested at their limits, just above them and just below them.

• All the loops were skipped at least once.

• For nested loops test the inner most loop first and then work outwards.

6.3. Security In Software

System security refers to various validations on data in form of checks and controls to avoid

the system from failing. It is always important to ensure that only valid data is entered and

only valid operations are performed on the system. The system employees two types of

checks and controls.

55

6.3.1. Client-side Validation

Various client side validations are used to ensure on the client side that only valid data

is entered. Client side validation saves server time and load to handle invalid data. Some

checks imposed are:

• VBScript in used to ensure those required fields are filled with suitable data only.

Maximum lengths of the fields of the forms are appropriately defined.

• Forms cannot be submitted without filling up the mandatory data so that manual

mistakes of submitting empty fields that are mandatory can be sorted out at the client

side to save the server time and load.

• Tab-indexes are set according to the need and taking into account the ease of user while

working with the system.

6.3.2. Serverside Validation

Some checks cannot be applied at client side. Server side checks are necessary to save

the system from failing and intimating the user that some invalid operation has been

performed or the performed operation is restricted. Some of the server side checks

imposed is:

• Server side constraint has been imposed to check for the validity of primary key and

foreign key. A primary key value cannot be duplicated. Any attempt to duplicate the

primary value results into a message intimating the user about those values through the

forms using foreign key can be updated only of the existing foreign key values.

• User is intimating through appropriate messages about the successful operations or

exceptions occurring at server side.

56

Chapter VII

7. CONCLUSION AND FUTURE SCOPE

This project developed, incorporated all the activities involved in the browsing centre. It

provides all necessary information to the management as well as the customer with the use

of this system; the user can simply sit in front of the system and monitor all the activities

without any physical movement of the file. Management can service the customer’s request

best in time. The system provides quickly and valuable information. These modules have

been integrated for effective use of the management for future forecasting and for the

current need.

7.1 Future Scope

The project was developed to fulfil user requirements however there are lots of scope to

improve the performance of the Banking System in the area of user interface, database

performance, and query processing time. So, there are many things for future enhancement

of this project. The future enhancement that are possible in this project are as follows.

1. Integration with emerging technologies: The system can be integrated with

emerging technologies such as blockchain and artificial intelligence to enhance

security, automate processes, and improve decision-making. This can lead to

increased efficiency and cost savings.

2. Extension to support more languages and currencies: The system can be

extended to support more languages and currencies to cater to the needs of a broader

customer base. This can help banks expand their reach and serve a more diverse

customer base.

3. Credit card management: The system can be expanded to include credit card

management, allowing customers to manage their credit card accounts, view

transactions, and pay bills online.

x

REFERENCES

• For Java installation

▪ https://www.java.com/en/download/

• For Oracle Data Base Installation

▪ http://www.oracle.com/index.html

• Reference Websites

▪ www.javatpoint.com

▪ www.w3schools.com

▪ http://www.tutorialspoint.com/java/index.htm

• Reference Books

▪ Thinking in java

▪ OCJP Certified Programmer for Java

▪ Learn Java in Easy Steps

▪ Complete reference Java

http://www.oracle.com/index.html
http://www.javatpoint.com/
http://www.w3schools.com/
http://www.tutorialspoint.com/java/index.htm

xi

RESUME

MD. ASIF KHAN
+91 63941 23775

Email Id: mdasifkhan7317@gmail.com

OBJECTIVE
To be professional towards the organization and to work where my skills will be useful,

active to accept all challenges and work hard towards achieving goals of the organization

with new techniques.

EDUCATIONAL QUALIFICATION

• Pursuing MCA 2nd year from Integral University Lucknow.

• Passed out BCA from Integral University Lucknow in 2021.

• Passed out 12th from ISC in 2018.

Marks 74%

• Passed out 10th from ICSE in 2016.

Marks 68%

TECHNICAL SKILLS
• Programming Language: JAVA, JavaScript, JSP, HTML, CSS, Bootstrap.

• API’s: Servlet.

• Software: NetBeans.

• Databases: MySQL.

WORK EXPERIENCE
FRESHER

STRENGTH & HOBBIES
• Good strength of working with team, strong ability to work creating and determination.

• Can easily adjust and adopt according to environment.

• Good Communication skill.

PERSONAL DETAILS

Father’s Name : Md. Aslam Khan

D. O. B : 20-08-2000

Address : Vill: - Khizirpur, post: - Zamania, dist.: -

Ghazipur.

Marital Status : Single

Date ………………………

mailto:mdasifkhan7317@gmail.com

xii

RESUME
Mahboob Alam

Bamhour, mubarakpur

Azamgarh

Email :- saifshaikh9621@gmail.com

Phone:-8546048553

OBJECTIVES
To seek a dynamic and challenging carrier an organization strives

for excellence with my knowledge and team effort while making

positive contribution to promote the individual opportunity and

professional growth.

EDUCATIONAL QUALIFICATION

Education

specification

institution Passing year Marks obtained

in %

MCA Integral university 2023 81

BCA Integral university 2021 72

12th Kashi Ic Hazipur

Bamhour Azamgarh

2018 51.16

10th Central Public

School

2015 58.9

COMPUTER SKILL

• Programming language :- Core JAVA, HTML ,css,Bootstrap

• Operating system:- Window , Linux

• Web design:- HTML

STRENGTH FACTOR
➢ Good strength of working with team , strong ability to work creating and

determination

➢ Can easily adjust and adopt according to environment

HOBBIES
➢ Playing cricket

➢ Reading story

PERSONAL PROFILE
Language :- Hindi , English

D.O.B :- 26/01/1999

Sports :- Cricket

Marital status :- Single

Nationality :- Indian

