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ABSTRACT 

 

ECG is a device that detects the heart's electrical behavior. The heart is a 

muscular organ which pumps blood through the body rhythmically. Large 

signal data must be stored and transmitted. The ECG signal data must then be 

compressed effectively. We compared the performance of different forms of 

ECG compression techniques in this dissertation. These strategies are essential 

in reducing the size of the transmitted data without losing clinical information. 

These schemes are based on transformation methods such as Discrete Cosine 

Transform (DCT), Discrete Sine Transform (DST), Fast Fourier Transform 

(FFT),  the improved method Discrete Cosine Transform- II (DCT-II) and 

Blaschke unwinding AFD .Records selected from MIT-BIH arrhythmia 

database are tested. For performance evaluation Percent Root Mean Square 

differences (PRD)  and Compression Ratio (CR) are used. 
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CHAPTER 1 

  1.1 Introduction: 

Electrocardiographic signals may be recorded on a long timescale (i.e., several days) for the 

purpose of identifying intermittently occurring disturbances in the heart rhythm. As a result, 

the produced ECG recording amounts to huge data sizes that quickly fill up available storage 

space. Transmission of signals across public telephone networks is another application in 

which large amounts of data are involved. For both situations, data compression is an essential 

operation and, consequently, represents yet another objective of ECG signal processing. 

Signal processing has contributed significantly to a new understanding of the ECG and its 

dynamic properties as expressed by changes in rhythm and beat morphology. For example, 

techniques have been developed that characterize oscillations related to the cardiovascular 

system and reflected by subtle variations in heart rate. ECG Data Compression is required to 

reduce the disk space required to store the data, as ECG is a continuous data taken for a very 

long interval of time. Also by compressing redundant data from the signal can be removed 

which actually takes considerably large area in memory. The need of signal transmission over 

telephone lines or antenna for remote analysis makes the compression and data reconstruction 

of the signal an important issue in signal processing. ECG is a graphic display of the electrical 

activity of the heart. Due to low cost and noninvasion, ECG signal has been extended for heart 

disease diagnosis and ambulatory monitoring. For storage and transmission of large signal 

data, it is necessary to compress the ECG signal data. Data compression has its application in 

many fields and so as in the field of medical science. ECG is an important parameter that 

measures patient’s health and reports abnormalities if any. This thesis has done a survey of 

various kinds of ECG data compression techniques. Recently, numerous research and 

techniques have been developed for compression of the signal. These techniques are essential 

to a variety of application ranging from diagnostic to ambulatory ECG’s. Thus, the need for 

effective ECG compression techniques is of great importance. The non-invasive extraction of 

physiological and clinical information hidden in biomedical signals is an important and 

fascinating field of research. Non-invasive assessment of the physiological parameters of a 

patient enables to study the physiology and patho-physiology of the investigated system, with 
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minimal interference and inconvenience. Endogenous biomedical signals from physiological 

systems are acquired for a number of reasons including diagnosis, post surgical intensive care 

monitoring, neonatal monitoring and guide therapy and for research. The electrocardiogram 

(ECG) is a non- stationary signal containing information about the physiological condition of 

the heart. The electrical activity of the heart depicts the morphology and durations of the P-

QRS- T intervals (Figure 1). The P, QRS complex and T features of ECG reveal the rhythmic 

depolarization and re polarization of the myocardium contractions of heart’s atria and 

ventricles [1]. The time intervals between various peaks contain clinical information about the 

nature of possible disease afflicting a heart [2]. 

Due to low cost and non-invasion, ECG signal has been extended for heart disease diagnosis 

and ambulatory monitoring resulting in enormous volume of the data. In course of a 24-h ECG 

observation or multichannel biological signal acquisition, real-time data compression methods 

are required for the effective use of communications channels such as wired channel, wireless 

environment and cloud computing. The ECG data compression is also required for the 

transmission of ECG signals across intensive care units, emergency tele-medical services, 

telemedicine, home care, space programs, sports, military, public telephone networks, cellular 

networks and wireless communication systems [4-5]. ECG is having possibility of redundant 

information reduction through inter and intra beat correlation, which is the basic cause of its 

compression [6]. The fundamental goal of data compression is efficient transmission or 

storage while preserving the significant diagnostic features. 

In general, ECG compression can be classified into lossy and lossless techniques [7]. The 

lossless compression guarantee the integrity of reconstructed data while compromised 

compression ratio (CR), with nearly 0% reconstruction error, on the other hand lossy 

compression is having high CR with varying level of reconstruction error [6]. 
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Fig 1.1: Time intervals of ECG 

ECG signal compression techniques widely fall into three categories of direct method, 

transformation method and parameter extraction method [7, 8]. The direct data compression 

method openly analyzes and reduces data points in the time domain and the example includes 

turning point (TP) [25], amplitude zone time epoch coding (AZTEC) [3], Improved modified 

AZTEC technique [9], coordinate reduction time encoding system (CORTES) [48], SLOPE 

[10], the delta algorithm and the Fan algorithm [11]. The transformed method analyzes energy 

distribution by converting the time domain to some other domain and example includes 

Fourier transform, Fourier descriptor [12], the discrete cosine transform (DCT) [13], DCT 

with modified stages [14, 15] and wavelet transform [16], and the compressed sensing [17]. 

The parameter extraction method is based upon dominant feature extraction from raw signal; 

examples include neural based or syntactic methods [18],peak picking and linear prediction 

method [19]. The other methods for compression includes ASCII based encoding for 

incorporation of ECG data as ASCII character in existing technology [20-23]. 
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Fig. 1.2 Block diagram of transform based compression method 

 

1.2 ECG Signal Processing: 

The block diagram in Figure 1.3 presents this set of signal processing algorithms. Although 

these algorithms are frequently implemented to operate in sequential order, information on the 

occurrence time of a heartbeat, as produced by the QRS detector, is sometimes incorporated 

into the other algorithms to improve performance. The complexity of each algorithm varies 

from application to application so that, for example, noise filtering performed in ambulatory 

monitoring is much more sophisticated than that required in resting ECG analysis. Once the 

information produced by the basic set of algorithms is available, a wide range of ECG 

applications exist where it is of interest to use signal processing for quantifying heart rhythm 

and beat morphology properties. The signal processing associated with two such 

applications—high resolution ECG and T wave alternates are briefly described at the end of 

this article. The timing information produced by the QRS detector may be fed to the blocks for 

noise filtering and data compression (indicated by gray arrows) to improve their respective 

performance. The output of the upper branch is the conditioned ECG signal and related 

temporal information, including the occurrence time of each heartbeat and the onset and end 

of each wave. 

Compressed  Bit stream 
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Figure 1.3 Algorithms for basic ECG signal processing. 

The algorithm for real-time ECG signal compression and reconstruction is summarized in 

Figure1.4. As shown in this figure, it is composed of five compressing procedures and four 

reconstruction procedures. For compression, the first procedure is to obtain backward 

differences after 1/2 down-sampling of the ECG signal. The second procedure is to detect the 

peak of the differenced signal and classify it from the current peak to the previous peak and 

store the result. The third procedure is to obtain the DCT of the stored data. The fourth 

procedure is to filter the transformed data obtained in the previous procedure using a window 

filter, and the final procedure is to apply the Huffman coding algorithm. The data transmitted 

to a server or a base station from e-health devices are the data block coming out of the last 

compression procedure. The channel number can be added to the protocol header if e-health 

devices need to transmit multiple bio-signals. Figure 1.4 also shows the reconstruction 

procedure, which is the reverse order of the compression procedure. The first reconstruction 

procedure applies the inverse Huffman coding algorithm to the compressed and transmitted 

data. The second procedure obtains the inverse discrete cosine transform. The third 

interpolates the recovered time signal during the previous procedure using Spline 

interpolation, and the final procedure is to reconstruct the original signal after calculating the 

inverse difference[53]. 
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Figure 1.4 Block diagram of compression and 

decompression procedures[53] 

 

ECG, which is an analog signal, is usually sampled at 200 Hz to 1 kHz depending on the 

purpose of applications.Usually, the sampled data are represented as a 2-byte data. In the 

proposed data compression algorithm, the acquired ECG signal is first downsampled by 1/2 

and represented as 1-byte data after calculating the backward difference, decreasing its data 

size by 75%. The signed 1-byte data can be represented from –128 to +127 in decimal. 

 

Figure 1.5 Flowchart of difference offset calculation 

procedures for making 

 

ECG Data Compression is required to reduce the disk space required to store the data, as ECG 

is a continuous data taken for a very long interval of time. Also by compressing redundant 

data from the signal can be removed which actually takes considerably large area in memory. 
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The need of signal transmission over telephone lines or antenna for remote analysis makes the 

compression and data reconstruction of the signal an important issue in signal processing. 

ECG is a graphic display of the electrical activity of the heart. Due to low cost and 

noninvasion, ECG signal has been extended for heart disease diagnosis and ambulatory 

monitoring. For storage and transmission of large signal data, it is necessary to compress the 

ECG signal data. 

                 Data compression has its application in many fields and so as in the field of medical 

science. ECG is an important parameter that measures patient’s health and reports 

abnormalities if any. This thesis has done a survey of various kinds of ECG data  compression 

techniques. Recently, numerous research and techniques have been developed for compression 

of the signal. These techniques are essential to a variety of application ranging from diagnostic 

to ambulatory ECG’s. Thus, the need for effective ECG compression techniques is of great 

importance. Many existing compression algorithms have shown some success in 

electrocardiogram compression; however, algorithms that produce better compression ratios 

and less loss of data in the reconstructed signal are needed. This thesis discusses various 

techniques proposed earlier in literature for compression of an ECG signal and provide 

comparative study of these techniques. 

 

1.3. CHALLENGES:  

1. To overcome the Problem of Percentage Root Mean Square Difference(PRD). 

2. Reduced the storage requirements to develop a more efficient telecardiology system for 

cardiac analysis and diagnosis. 
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CHAPTER 2 

LITERATURE SURVEY 

ECG compression methods are classified as: lossless and lossy. In lossless method, 

compressed signal is reconstructed in exact form of original signal and in lossy method; 

compressed signal is reconstructed with some error. Another classification is based on 

techniques applied for compression and can be categorized as: 

2.1 DIRECT TIME-DOMAIN TECHNIQUES: 

Direct methods are based on the extraction of a subset of significant samples. Direct time-

domain ECG compression techniques have efficient performance in terms of processing speed 

and CR. These techniques explore the redundancies present directly in the ECG samples. 

Direct compression techniques can be based on three approaches: tolerance comparison 

Compression, differential pulse code modulation (DPCM), and entropy coding [3]. Next, the 

significant work that has been focussed towards direct ECG compression techniques is 

discussed. 

2.1.1 The Amplitude Zone Time Epoch Coding (AZTEC) Technique: 

Cox et al. developed the AZTEC algorithm for preprocessing of real-time ECG’s for rhythm 

analysis [3]. It has become a popular data reduction algorithm for ECG monitors. The AZTEC 

algorithm converts raw ECG sample points into plateaus. The amplitude value and length of 

each plateau are stored for reconstruction. Although the AZTEC technique is capable to 

compress with CR of 10 but the reconstruction error is not clinically acceptable. The step-like 

reconstructed signal may misinterpret the ECG features especially in the slow varying slopes 

of P and T peaks of the ECG [3, 24]. The AZTEC algorithm converts raw ECG sample points 

into plateaus and slopes. The AZTEC plateaus (horizontal lines) are produced by utilizing the 

zero-order interpolation. The stored values for each plateau are the amplitude value of the line 

and its length (the number of samples with which the line can be interpolated within aperture). 

The production of an AZTEC slope starts when the number of samples needed to form a 

plateau is less than three. The slope is saved whenever a plateau of three samples or more can 

be formed. The stored value of the slope are the duration (number of samples of the slope) and 
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the final elevation (amplitude of last sample point). Even though the AZTEC provides a high 

data reduction ratio, the reconstructed signal has poor fidelity mainly because of the 

discontinuity (step-like quantization) of the waves. A significant improvement in the shape, 

while smoothing the discontinuity, is achieved by using a smoothing filter, but this 

improvement causes higher error. A modified AZTEC algorithm was proposed in [50], in 

which the threshold is not a constant but a function of the temporary changes in the signal 

properties. A data compression ratio comparable to that of the original AZTEC algorithm was 

achieved and signal reconstruction was improved (by means of PRD). In another algorithm 

[51], vector quantization was used along with the m-AZTEC to produce a multi-lead ECG 

data compressor. This approach yieldes a compression ratio of 8:6:1. 

2.1.2 The Turning Point Technique: 

The TP is direct data compression technique to reduce the ECG sampling frequency without 

diminishing the elevation of large amplitude QRS complexes [25]. The TP algorithm achieved 

fixed CR of 2, with almost zero reconstruction error i.e. reconstructed signal resemble the 

original ECG signal. The drawback of this technique is its unsuitability for equally spaced 

time intervals. 

2.1.3 THE COORDINATE REDUCTION TIME ENCODING SYSTEM     

(CORTES) SCHEME: 

CORTES algorithm is a hybrid approach of AZTEC and TP to achieve high CR of the 

AZTEC and the low reconstruction error of the TP technique. TP was applied to the high 

frequency QRS region and AZTEC to the isoelectric regions of the ECG [48]. The 

performance analysis of the AZTEC, TP, and CORTES based compression for ECG’s at 200 

Hz sampling frequency produced CR of 5, 2 & 4.8 and PRD’s of 28, 5 & 7 respectively. 

2.1.4 Fan and SAPA technique: 

Gardenhire proposed and evaluated the Fan method for ECG compression [11]. Both Fan and 

Scan-Along Polygonal Approximation (SAPA) techniques are the first-order interpolation 

with two degrees of freedom (FOI-2DF) algorithms for ECG compression [24]. The Fan 

method implements the FOI-2DF without storing all the actual data points between the last 

transmitted and the present point. In this method, the compressor searches for the most distant 

sample (on the time axis), such that if a line is drawn between it and the last stored sample, the 
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local error along the line will be lower than a specific error tolerance. The location and the 

amplitude of this sample are stored, and this process recurs. The reconstructed signal looks 

like a broken line, and its fidelity depends on the error threshold. The greater the threshold is, 

the better the compression ratio, and the poorer the fidelity. The Scan-Along Polygonal 

Approximation (SAPA) techniques [52] are based on a similar idea to the Fan algorithm, and 

have similar performances. The SAPA2 algorithm, one of the three SAPA algorithms, showed 

the best results.For signals sampled at 250 Hz with 12 bit resolution, the compression ratio is 

3:1 with a PRD of 4%. 

2.1.5 Improved Modified AZTEC: 

In modified AZTEC algorithm, adaptive statistical parameters of the signal to be compressed 

are calculated. The adaptive algorithm optimizes the tradeoff between CR and PRD. [9]. The 

CR ranges between 2.76 and 9.91 for the threshold variation from 0.010 to 0.035 and PRD 

from 4.54 to 7.99 was achieved. 

2.1.6 DELTA CODING: 

A technique called delta coding with threshold was proposed in [26] for three-lead ECG 

compression. ECG samples of three-lead ECG signals with successive differences more than a 

threshold value are stored. Otherwise samples are considered redundant and removed. In other 

words, actual ECG samples are replaced by the first-difference signal (amplitude between 

successive samples) [27]. The DPCM based ECG compression system consists a quantizer in 

the compression stage and an estimator in both the compression and the reconstruction stages. 

2.2 TRANSFORM-DOMAIN TECHNIQUES: 

Transform based ECG compression techniques are performed by the application of linear 

orthogonal transformation to ECG samples. Thus original samples of ECG are subjected to a 

transformation and the compression is performed in the entirely new domain like Fourier 

transform (FT), DCT and wavelet etc [8, 12, 16, 28, 31]. These techniques pose higher CR 

than direct techniques and are insensitive to noise present in ECG signals. 

2.2.1 FT domain: 

With FT the frequency-amplitude representation of the signal is obtained [8, 12]. To 

reconstruct the signal inverse FFT is applied. Limitation of FT is that it fails to provide the 

information regarding the exact location of frequency component in time. 
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2.2.2 DCT domain: 

DCT represents a signal as a sum of varying magnitude and frequency. It implies different 

boundary condition & often used in signal and image processing for lossy data compression. 

DCT has strong “energy compaction property” & provide high de-correlation. In DCT 

compression signal information can restore in a restrict number of DCT coefficients [15, 29, 

30]. DCT-II provide very impressive CR but at the cost of high distortion. 

2.2.3 Wavelet domain: 

Wavelet transform have the beauty to analyze the signal both in time as well as frequency 

domains simultaneously. Many researchers concentrate on wavelet based ECG compression 

techniques [32-34]. Recently, one-dimensional (1D) and two- dimensional (2D) Wavelet 

transform based ECG compression techniques with impressive CR, low PRD and smooth 

signal quality are presented in literature [35-40]. The 2D compression approaches achieve 

high CR but involve complex steps; accurate QRS detection, period normalization, amplitude 

normalization and mean removal etc. 

 2.2.4 JPEG 2000: 

JPEG2000 [41] is the latest image compression standard applied to the compress ECG signals 

[42]. Some compression techniques use JPEG2000 as the encoder for the 2-D ECG image 

with high CR [43]. 

2.3 PARAMETER EXTRACTION TECHNIQUES: 

These are irreversible processes which retain the particular characteristics or parameters of the 

ECG signals. The parameter extraction method is based upon dominant feature extraction 

from raw ECG signal; examples include neural based or syntactic methods [18, 47], peak 

picking and linear prediction method [26, 44-48]. 

2.3.1 Peak picking approach: 

The ECG signal is sampled at peaks and significant fiducial points are extracted. Imai et al. 

[49] presented an ECG peak- picking compression system by reconstructing the signal using 

spline functions. 

2.3.2  Long term prediction approach: 
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Long-Term Prediction (LTP) explores the "periodicity" property of ECG signal to reduce 

redundancy and to achieve high CR. Reconstruction error; PRD for LTP approach is lower 

than the conventional linear short term prediction (STP) [44]. 
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CHAPTER 3  

DATA COMPRESSION TECHNIQUES 

3.1 Lossless Compression Techniques: 

3.1.1 Burrows Wheeler: 

The Burrows Wheeler algorithm is a relatively recent algorithm. An implementation of the 

algorithm called bzip, is currently one of the best overall compression algorithms for text. It 

gets compression ratios that are within 10% of the best algorithms such as PPM, but runs 

significantly faster. Rather than describing the algorithm immediately, let’s try to go through a 

thought process that leads to the algorithm. Recall that the basic idea of PPM was to try to find 

as long a context as- 
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Figure 3.1: Sorting the characters a1c1c2b1a2c3c4a3c5b2a4 based on context: (a) each character in its context, 

(b) end context moved to front, and (c) characters sorted by their context using reverse lexicographic ordering. 

 

We use subscripts to distinguish different occurences of the same character. possible that 

matched the current context and use that to effectively predict the next character. A problem 

with PPM is in selecting k. If we set k too large we will usually not find matches and end up 
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sending too many escape characters. On the other hand if we set it too low, we would not be 

taking advantage of enough context. We could have the system automatically select k based 

on which does the best encoding, but this is expensive. Also within a single text there might be 

some very long contexts that could help predict, while most helpful contexts are short. Using a 

fixed k we would probably end up ignoring the long contexts. Lets see if we can come up with 

a way to take advantage of the context that somehow automatically adapts. Ideally we would 

like the method also to be a bit faster. Consider taking the string we want to compress and 

looking at the full context for each character i.e., all previous characters from the start of the 

string up to the character. In fact, to make the contexts the same length, which will be 

convenient later, we add to the head of each context the part of the string following the 

character making each context n − 1 characters. Examples of the context for each character of 

the string accbaccacba are given in Figure 3.1. Now lets sort these contexts based on reverse 

lexical order, such that the last character of the context is the most significant (see Figure 

3.1c). Note that now characters with the similar contexts (preceeding characters) are near each 

other. In fact, the longer the match (the more preceeding characters that match identically) the 

closer they will be to each other. This is similar to PPM in that it prefers longer matches when 

“grouping”, but will group things with shorter matches when the longer match does not exist. 

The difference is that there is no fixed limit k on the length of a match—a match of length 100 

has priority over a match of 99. 

In practice the sorting based on the context is executed in blocks, rather than for the full 

message sequence. This is because the full message sequence and additional data structures 

required for sorting it, might not fit in memory. The process of sorting the characters by their 

context is often referred to as a block-sorting transform. In the discussion below we will refer 

to the sequence of characters generated by a block-sorting transform as the context-sorted 

sequence (e.g., c1a1c3c5a4a2c2c4b2b1a3 in Figure 3.1). Given the correlation between neary 

by characters in a context-sorted sequence, we should be able to code them quite efficiently by 

using, for example, a move-to-front coder. For long strings with somewhat larger character 

sets this technique should compress the string significantly since the same character is likely 

to appear in similar contexts. Experimentally, in fact, the technique compresses about as well 

as PPM even though it has no magic number k or magic way to select the escape probabilities. 
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The problem remains, however, of how to reconstruct the original sequence from context 

sorted sequence. The way to do this is the ingenious contribution made by Burrows and 

Wheeler. You might try to recreate it before reading on. The order of the most-significant 

characters in the sorted contexts plays an important role in decoding. In the example of Figure 

3.1, these are a1a4a2a3b2b1c1c3c5c2c4. The characters are sorted, but equal valued characters 

do not necessarily appear in the same order as in the input sequence. The following lemma is 

critical in the algorithm for efficiently reconstruct the sequence. 

 

Lemma 3.1.1. For the Block-Sorting transform, as long as there are at least two distinct 

characters in the input, equal valued characters appear in the same order in the most-

significant characters of the sorted contexts as in the output (the context sorted sequence).  

Proof. Since the contexts are sorted in reverse lexicographic order, sets of contexts whose 

most significant character are equal will be ordered by the remaining context i.e., the string of 

all previous characters. Now consider the contexts of the context-sorted sequence. If we drop 

the least-significant character of these contexts, then they are exactly the same as the 

remaining context above, and therefore will be sorted into the same ordering. The only time 

that dropping the least significant character can make a difference is when all other characters 

are equal. This can only happen when all characters in the input are equal. Based on Lemma 

3.1.1, it is not hard to reconstruct the sequence from the context-sorted sequence as long as we 

are also given the index of the first character to output (the first character in the original input 

sequence). The algorithm is given by the following code 

function BW Decode (In,FirstIndex,n) 

S = Move To FrontDecode(In,n) 

R = Rank(S) 

j = First Index 

for i = 1 to n − 1 

Out[i] = S[j] 

j = R[j] 
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For an ordered sequence S, the Rank(S) function returns a sequence of integers specifying for 

each character c 2 S how many characters are either less than c or equal to c and appear before 

c in S. Another way of saying this is that it specifies the position of the character if it where 

sorted using a stable sort. 

   

S  Sort (S) S Rank (S)  Out 
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Figure 3.2: Burrows-Wheeler Decoding Example. 

The decoded message sequence is assanissimassa. To show how this algorithms works, we 

consider an example in which the MoveToFront decoder returns S = ssnasmaisssaai, and in 

which FirstIndex = 4 (the first a). The example is shown in Figure 3.2(a). We can generate the 

most significant characters of the contexts simply by sorting S. The result of the sort is shown 

in Figure 3.2(b) along with the rank R. Because of Lemma 3.1.1, we know that equal valued 

characters will have the same order in this sorted sequence and in S. This is indicated by the 
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subscripts in the figure. Now each row of Figure 3.2(b) tells us for each character what the 

next character is. We can therefore simply rebuild the initial sequence by starting at the first 

character and adding characters one by one, as done by BW Decode and as illustrated in 

Figure 3.2(c). 

 

3.2 Lossy Compression Techniques: 

Lossy compression is compression in which some of the information from the original 

message sequence is lost. This means the original sequences cannot be regenerated from the 

compressed sequence. Just because information is lost doesn’t mean the quality of the output 

is reduced. For example, random noise has very high information content, but when present in 

an image or a sound file, we would typically be perfectly happy to drop it. Also certain losses 

in images or sound might be completely imperceptible to a human viewer (e.g. the loss of very 

high frequencies). For this reason, lossy compression algorithms on images can often get a 

factor of 2 better compression than lossless algorithms with an imperceptible loss in quality. 

However, when quality does start degrading in a noticeable way, it is important to make sure it 

degrades in a way that is least objectionable to the viewer (e.g., dropping random pixels is 

probably more objectionable than dropping some color information). For these reasons, the 

way most lossy compression techniques are used are highly dependent on the media that is 

being compressed. Lossy compression for sound, for example, is very different than lossy 

compression for images. In this section we go over some general techniques that can be 

applied in various contexts, and in the next two sections we go over more specific examples 

and techniques. 

3.2.1 Scalar Quantization: 

A simple way to implement lossy compression is to take the set of possible messages S and 

reduce it to a smaller set S0 by mapping each element of S to an element in S0. For example 

we could take 8-bit integers and divide by 4 (i.e., drop the lower two bits), or take a character 

set in which upper and lowercase characters are distinguished and replace all the uppercase 

ones with lowercase ones. This general technique is called quantization. Since the mapping 

used in quantization is many-toone, it is irreversible and therefore lossy. In the case that the 

set S comes from a total order and the total order is broken up into regions that map onto the 
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elements of S0, the mapping is called scalar quantization. The example of dropping the lower 

two bits given in the previous paragraph is an example of scalar quantization. Applications of 

scalar quantization include reducing the number of color bits or gray-scale levels in images 

(used to save memory on many computer monitors), and classifying the intensity of frequency 

components in images or sound into groups (used in JPEG compression). In fact we 

mentioned an example of quantization when talking about JPEG-LS. There quantization is 

used to reduce the number of contexts instead of the number of message values. In particular 

we categorized each of 3 gradients into one of 9 levels so that the context table needs only 93 

entries (actually only (93 + 1)/2 due to symmetry). The term uniform scalar quantization is 

typically used when the mapping is linear. Again, the example of dividing 8-bit integers by 4 

is a linear mapping. In practice it is often better to use a non-uniform scalar quantization. For 

example, it turns out that the eye is more sensitive to low values of red than to high values. 

Therefore we can get better quality compressed images by making the regions in the low 

values smaller than the regions in the high values. Another choice is to base the nonlinear 

mapping on the probability of different input values. In fact, this idea can be formalized—for a 

given error metric and a given probability distribution over the input values, we want a 

mapping that will minimize the expected error. For certain error-metrics, finding this mapping 

might be hard. For the root-mean-squared error metric there is an iterative algorithm known as 

the Lloyd-Max algorithm that will find the optimal mapping. An interesting point is that 

finding this optimal mapping will have the effect of decreasing the effectiveness of any 

probability coder that is used on the output. This is because the mapping will tend to more 

evenly spread the probabilities in S0.  

 

3.2.2 Vector Quantization: 

Scalar quantization allows one to separately map each color of a color image into a smaller set 

of output values. In practice, however, it can be much more effective to map regions of 3-D 

color space into output values. 
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Figure 3.3: Examples of (a) uniform and (b) non-uniform scalar quantization. 
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Figure 3.4: Example of vector-quantization for a height-weight chart 

 

By more effective we mean that a better compression ratio can be achieved based on an 

equivalent loss of quality. The general idea of mapping a multidimensional space into a 

smaller set of messages S0 is called vector quantization. Vector quantization is typically 

implemented by selecting a set of representatives from the input space, and then mapping all 
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other points in the space to the closest representative. The representatives could be fixed for 

all time and part of the compression protocol, or they could be determined for each file 

(message sequence) and sent as part of the sequence. The most interesting aspect of vector 

quantization is how one selects the representatives. Typically it is implemented using a 

clustering algorithm that finds some number of clusters of points in the data. A representative 

is then chosen for each cluster by either selecting one of the points in the cluster or using some 

form of centroid for the cluster. Finding good clusters is a whole interesting topic on its own. 

Vector quantization is most effective when the variables along the dimensions of the space are 

correlated. Figure 3.4 gives an example of possible representatives for a height-weight chart. 

There is clearly a strong correlation between people’s height and weight and therefore the 

representatives can be concentrated in areas of the space that make physical sense, with higher 

densities in more common regions. Using such representatives is very much more effective 

than separately using scalar quantization on the height and weight. We should note that vector 

quantization, as well as scalar quantization, can be used as part of a lossless compression 

technique. In particular if in addition to sending the closest representative, the coder sends the 

distance from the point to the representative, then the original point can be reconstructed. The 

distance is often referred to as the residual. In general this would not lead to any compression, 

but if the points are tightly clustered around the representatives, then the technique can be very 

effective for lossless compression since the residuals will be small and probability coding will 

work well in reducing the number of bits.  

3.2.3 Transform Coding: 

The idea of transform coding is to transform the input into a different form which can then 

either be compressed better, or for which we can more easily drop certain terms without as 

much qualitative loss in the output. One form of transform is to select a linear set of basis 

functions that span the space to be transformed. Some common sets include sin, cos, 

polynomials, spherical harmonics, Bessel functions, and wavelets. Figure 3.5 shows some 

examples of the first three basis functions for discrete cosine, polynomial, and wavelet 

transformations. For a set of n values, transforms can be expressed as an n × n matrix T. 

Multiplying the input by this matrix T gives, the transformed coefficients. Multiplying the 

coefficients by T−1 will convert the data back to the original form.  
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For example, the coefficients for the discrete cosine transform (DCT) are 

Tij = ( p 1/n cos (2j+1)i_ p 2n i = 0,0 _ j < n 2/n cos (2j+1)i_ 2n 0<i < n, 0 _ j < n              (3.1) 

 

The DCT is one of the most commonly used transforms in practice for image compression, 

more so than the discrete Fourier transform (DFT). This is because the DFT assumes 

periodicity, which is not necessarily true in images. In particular to represent a linear function 

over a region requires many large amplitude high-frequency components in a DFT. This is 

because the periodicity assumption will view the function as a sawtooth, which is highly 

discontinuous at the teeth requiring the high-frequency components. The DCT does not 

assume periodicity and will only require much lower amplitude high-frequency components. 

The DCT also does not require a phase, which is typically represented using complex numbers 

in the DFT. For the purpose of compression, the properties we would like of a transform are 

(1) to decorrelate the data, (2) have many of the transformed coefficients be small, and (3) 

have it so that from the point of view of perception, some of the terms are more important than 

others. 

 

Figure 3.5: Transforms 
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3.3 A Case Study: JPEG and MPEG: 

The JPEG and the related MPEG format make good real-world examples of compression 

because (a) they are used very widely in practice, and (b) they use many of the compression 

techniques we have been talking about, including Huffman codes, arithmetic codes, residual 

coding, runlength coding, scalar quantization, and transform coding. JPEG is used for still 

images and is the standard used on the web for photographic images (the GIF format is often 

used for textual images). MPEG is used for video and after many years of debated MPEG-2 

has become the standard for the transmission of high-definition television (HDTV). This 

means in a few years we will all be receiving MPEG at home. As we will see, MPEG is based 

on a variant of JPEG (i.e. each frame is coded using a JPEG variant). Both JPEG and MPEG 

are lossy formats. 

 

3.3.1 JPEG: 

JPEG is a lossy compression scheme for color and gray-scale images. It works on full 24-bit 

color, and was designed to be used with photographic material and naturalistic artwork. It is 

not the ideal format for line-drawings, textual images, or other images with large areas of solid 

color or a very limited number of distinct colors. The lossless techniques, such as JBIG, work 

better for such images. JPEG is designed so that the loss factor can be tuned by the user to 

tradeoff image size and image quality, and is designed so that the loss has the least effect on 

human perception. It however does have some anomalies when the compression ratio gets 

high, such as odd effects across the boundaries of 8x8 blocks. For high compression ratios, 

other techniques such as wavelet compression appear to give more satisfactory results. An 

overview of the JPEG compression process is given in Figure 3.6. We will cover each of the 

steps in this process. The input to JPEG are three color planes of 8-bits per-pixel each 

representing Red, Blue and Green (RGB). These are the colors used by hardware to generate 

images. The first step of JPEG compression, which is optional, is to convert these into YIQ 

color planes. The YIQ color planes are 
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Figure 3.6: Steps in JPEG compression. 

designed to better represent human perception and are what are used on analog TVs in the US 

(the NTSC standard). The Y plane is designed to represent the brightness (luminance) of the 

image. It is a weighted average of red, blue and green (0.59 Green + 0.30 Red + 0.11 Blue). 

The weights are not balanced since the human eye is more responsive to green than to red, and 

more to red than to blue. The I (interphase) and Q (quadrature) components represent the color 

hue (chrominance). If you have an old black-and-white television, it uses only the Y signal 

and drops the I and Q components, which are carried on a sub-carrier signal. The reason for 

converting to YIQ is that it is more important in terms of perception to get the intensity right 

than the hue. Therefore JPEG keeps all pixels for the intensity, but typically down samples the 

two color planes by a factor of 2 in each dimension (a total factor of 4). This is the first lossy 

component of JPEG and gives a factor of 2 compression: (1 + 2 _ .25)/3 = .5. The next step of 

the JPEG algorithm is to partition each of the color planes into 8x8 blocks. Each of these 

blocks is then coded separately. The first step in coding a block is to apply a cosine transform 

across both dimensions. This returns an 8x8 block of 8-bit frequency terms. So far this does 

not introduce any loss, or compression. The block-size is motivated by wanting it to be large 

enough to capture some frequency components but not so large that it causes “frequency 

spilling”. In particular if we cosine-transformed the whole image, a sharp boundary anywhere 

in a line would cause high values across all frequency components in that line. After the 
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cosine transform, the next step applied to the blocks is to use uniform scalar quantization on 

each of the frequency terms. This quantization is controllable based on user parameters and is 

the main source of information loss in JPEG compression. Since the human eye is more 

perceptive to certain frequency components than to others, JPEG allows the quantization 

scaling factor to be different for each frequency component. The scaling factors are specified 

using an 8x8 table that simply is used to element-wise divide the 8x8 table of frequency 

components. JPEG 

 

16     11     10    16    24    40    51    61 

12     12     14    19   26    58     60    55 

14      13    16    24    40    57    69    56 

14       17    22    29    51    87    80    62 

18      22    37    56    68   109  103    77 

 24       35    55    64    81   104  113    92 

   49       64    78    87   103   121  120   101 

 

Table 3.1 : JPEG default quantization table, luminance plane. 

 

Figure 3.7: Zig-zag scanning of JPEG blocks. 

defines standard quantization tables for both the Y and I-Q components. The table for Y is 

shown in Table 3.1. In this table the largest components are in the lower-right corner. This is 

because these are the highest frequency components which humans are less sensitive to than 

the lower-frequency components in the upper-left corner. The selection of the particular 
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numbers in the table seems magic, for example the table is not even symmetric, but it is based 

on studies of human perception. If desired, the coder can use a different quantization table and 

send the table in the head of the message. To further compress the image, the whole resulting 

table can be divided by a constant, which is a scalar “quality control” given to the user. The 

result of the quantization will often drop most of the terms in the lower left to zero. 

JPEG compression then compresses the DC component (upper-leftmost) separately from the 

other components. In particular it uses a difference coding by subtracting the value given by 

the DC component of the previous block from the DC component of this block. It then 

Huffman or arithmetic codes this difference. The motivation for this method is that the DC 

component is often similar from block-to-block so that difference coding it will give better 

compression. The other components (the AC components) are now compressed. They are first 

converted into a linear order by traversing the frequency table in a zig-zag order (see Figure 

3.7). The motivation for this order is that it keeps frequencies of approximately equal length 

close to each other 

 

Playback order: 0 1 2 3 4 5 6 7 8 9 

Frame type: I B B P B B P B B I 

Data stream order: 0 2 3 1 5 6 4 8 9 7 

Figure 3.8: MPEG B-frames postponed in data stream. 

 

in the linear-order. In particular most of the zeros will appear as one large contiguous block at 

the end of the order. A form of run-length coding is used to compress the linear-order. It is 

coded as a sequence of (skip,value) pairs, where skip is the number of zeros before a value, 

and value is the value. The special pair (0,0) specifies the end of block. For example, the 

sequence [4,3,0,0,1,0,0,0,1,0,0,0,...] is represented as [(0,4),(0,3),(2,1),(3,1),(0,0)]. This 

sequence is then compressed using either arithmetic or Huffman coding. Which of the two 

coding schemes used is specified on a per-image basis in the header. 
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3.3.2 MPEG: 

Correlation improves compression. This is a recurring theme in all of the approaches we have 

seen; the more effectively a technique is able to exploit correlations in the data, the more 

effectively it will be able to compress that data. This principle is most evident in MPEG 

encoding. MPEG compresses video streams. In theory, a video stream is a sequence of 

discrete images. In practice, successive images are highly interrelated. Barring cut shots or 

scene changes, any given video frame is likely to bear a close resemblance to neighboring 

frames. MPEG exploits this strong correlation to achieve far better compression rates than 

would be possible with isolated images. Each frame in an MPEG image stream is encoded 

using one of three schemes: 

I-frame , or intra-frame, are coded as isolated images. 

P-frame , or predictive coded frame, are based on the previous I- or P-frame. 

B-frame , or bidirectionally predictive coded frame, are based on either or both the previous 

and next I- or P-frame. 

Figure 3.8 shows an MPEG stream containing all three types of frames. I-frames and P-frames 

appear in an MPEG stream in simple, chronological order. However, B-frames are moved so 

that they appear after their neighboring I- and P-frames. This guarantees that each frame 

appears after any frame upon which it may depend. An MPEG encoder can decode any frame 

by buffering the two most recent I- or P-frames encountered in the data stream. Figure 3.8 

shows how B-frames are postponed in the data stream so as to simplify decoder buffering. 

MPEG encoders are free to mix the frame types in any order. When the scene is relatively 

static, P- and B-frames could be used, while major scene changes could be encoded using I-

frames. In practice, most encoders use some fixed pattern. 
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Figure 3.9: P-frame encoding. 

Since I-frames are independent images, they can be encoded as if they were still images. The 

particular technique used by MPEG is a variant of the JPEG technique (the color 

transformation and quantization steps are slightly different). I-frames are very important for 

use as anchor points so that the frames in the video can be accessed randomly without 

requiring one to decode all previous frames. To decode any frame we need only find its closest 

previous I-frame and go from there. This is important for allowing reverse playback, skip-

ahead, or error-recovery. The intuition behind encoding P-frames is to find matches, i.e., 

groups of pixels with similar patterns, in the previous reference frame and then coding the 

difference between the P-frame and its match. To find these “matches” the MPEG algorithm 

partitions the P-frame into 16x16 blocks. The process by which each of these blocks is 

encoded is illustrated in Figure 3.9. For each target block in the P-frame the encoder finds a 

reference block in the previous P- or I-frame that most closely matches it. The reference block 

need not be aligned on a 16-pixel boundary and can potentially be anywhere in the image. In 

practice, however, the x-y offset is typically small. The offset is called the motion vector. 

Once the match is found, the pixels of the reference block are subtracted from the 

corresponding pixels in the target block. This gives a residual which ideally is close to zero 

everywhere. This residual is coded using a scheme similar to JPEG encoding, but will ideally 

get a much better compression ratio because of the low intensities. In addition to sending the 
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coded residual, the coder also needs to send the motion vector. This vector is Huffman coded. 

The motivation for searching other locations in the reference image for a match is to allow for 

the efficient encoding of motion. In particular if there is a moving object in the sequence of 

images (e.g., a car or a ball), or if the whole video is panning, then the best match will not be 

in the same location in the image. It should be noted that if no good match is found, then the 

block is coded as if it were from an I-frame. In practice, the search for good matches for each 

target block is the most computationally expensive part of MPEG encoding. With current 

technology, real-time MPEG encoding is only possible with the help of custom hardware. 

Note, however, that while the search for a match is expensive, regenerating the image as part 

of the decoder is cheap since the decoder is given the motion vector and only needs to look up 

the block from the previous image. B-frames were not present in MPEG’s predecessor, H.261. 

They were added in an effort to address the following situation: portions of an intermediate P-

frame may be completely absent from all previous frames, but may be present in future 

frames. For example, consider a car entering a shot from the side. Suppose an I-frame encodes 

the shot before the car has started to appear, and another I-frame appears when the car is 

completely visible. We would like to use P-frames for the intermediate scenes. However, since 

no portion of the car is visible in the first I-frame, the P-frames will not be able to “reuse” that 

information. The fact that the car is visible in a later I-frame does not help us, as P-frames can 

only look back in time, not forward. B-frames look for reusable data in both directions. The 

overall technique is very similar to that used in P-frames, but instead of just searching in the 

previous I- or P-frame for a match, it also searches in the next I- or P-frame. Assuming a good 

match is found in each, the two reference frames are averaged and subtracted from the target 

frame. If only one good match is found, then it is used as the reference. The coder needs to 

send some information on which reference(s) is (are) used, and potentially needs to send two 

motion vectors. How effective is MPEG compression? We can examine typical compression 

ratios for each frame type, and form an average weighted by the ratios in which the frames are 

typically interleaved. Starting with a 356×260 pixel, 24-bit color image, typical compression 

ratios forMPEG-I are: 

Type Size Ratio 

I 18 Kb 7:1 
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P 6 Kb 20:1 

B 2.5 Kb 50:1 

Avg 4.8 Kb 27:1 

If one 356 × 260 frame requires 4.8 Kb, how much bandwidth does MPEG require in order to 

provide a reasonable video feed at thirty frames per second? 30frames/sec,4.8Kb/frame · 

8b/bit = 1.2Mbits/sec Thus far, we have been concentrating on the visual component of  

MPEG. Adding a stereo audio stream will require roughly another 0.25 Mbits/sec, for a grand 

total bandwidth of 1.45 Mbits/sec. This fits nicely within the 1.5 Mbit/sec capacity of a T1 

line. In fact, this specific limit was a design goal in the formation ofMPEG. Real-lifeMPEG 

encoders track bit rate as they encode, and will dynamically adjust compression qualities to 

keep the bit rate within some user-selected bound. This bit-rate control can also be important 

in other contexts. For example, video on a multimedia CD-ROM must fit within the relatively 

poor bandwidth of a typical CD-ROM drive. 

 

3.3.3 MPEG in the Real World: 

MPEG has found a number of applications in the real world, including: 

1. Direct Broadcast Satellite. MPEG video streams are received by a dish/decoder, which 

unpacks the data and synthesizes a standard NTSC television signal. 

2. Cable Television. Trial systems are sending MPEG-II programming over cable television 

lines. 

3. Media Vaults. Silicon Graphics, Storage Tech, and other vendors are producing on-demand 

video systems, with twenty file thousand MPEG-encoded films on a single installation. 

4. Real-Time Encoding. This is still the exclusive province of professionals. Incorporating 

special-purpose parallel hardware, real-time encoders can cost twenty to fifty thousand dollars.  

 

3.4 Other Lossy Transform Codes: 

3.4.1 Wavelet Compression: 

JPEG and MPEG decompose images into sets of cosine waveforms. Unfortunately, cosine is a 

periodic function; this can create problems when an image contains strong aperiodic features. 

Such local high-frequency spikes would require an infinite number of cosine waves to encode 
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properly. JPEG and MPEG solve this problem by breaking up images into fixed-size blocks 

and transforming each block in isolation. This effectively clips the infinitely-repeating cosine 

function, making it possible to encode local features. An alternative approach would be to 

choose a set of basis functions that exhibit good locality without artificial clipping. Such basis 

functions, called “wavelets”, could be applied to the entire image, without requiring blocking 

and without degenerating when presented with high-frequency local features. How do we 

derive a suitable set of basis functions? We start with a single function, called a “mother 

function”. Whereas cosine repeats indefinitely, we want the wavelet mother function, _, to be 

contained within some local region, and approach zero as we stray further away: 

→x
lim 0)( = x

                
(3.2) 

The family of basis functions are scaled and translated versions of this mother function. For 

some scaling factor s and translation factor l, _sl(x) = _(2sx − l) A well know family of 

wavelets are the Haar wavelets, which are derived from the following mother function: 

 

Figure 3.10: A small Haar wavelet family of size seven. 
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Φ(x) = {
1 ∶    0 <  𝑥 ≤  1/2

−1 ∶    1/2 <  𝑥 ≤  1
0 ∶    𝑥 ≤ 0 𝑜𝑟 𝑥 > 1

 

 

 

Figure 3.10 shows a family of seven Haar basis functions. Of the many potential wavelets, 

Haar wavelets are probably the most described but the least used. Their regular form makes 

the underlying mathematics simple and easy to illustrate, but tends to create bad blocking 

artifacts if actually used for compression. Many other wavelet mother functions have also 

been proposed. The Morret wavelet convolves a Gaussian with a cosine, resulting in a periodic 

but smoothly decaying function. This function is equivalent to a wave packet from quantum 

physics, and the mathematics of Morret functions have been studied extensively. Figure 4.11 

shows a sampling of other popular wavelets. Figure 4.12 shows that the Daubechies wavelet is 

actually a self-similarity.  

 

 

 

 

3.11: A sampling of popular wavelets.                     Figure 3.12: Self-similarity in the Daubechies wavelet. 

3.4.2 Fractal Compression: 

A function f(x) is said to have a fixed point xf if xf = f(xf ). For example: 

f(x) = ax + b      (3.3) 

     = b/(1-a)        (3.4) 
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may be a black box, whose formal definition is not known. In that case, we might try an 

iterative approach. Keep feeding numbers back through the function in hopes that we will 

converge on a solution: 

x0 = guess 

xi = f(xi−1) 

For example, suppose that we have f(x) as a black box. We might guess zero as x0 and iterate 

from there: 

x0 = 0 

x1 = f(x0) = 1 

x2 = f(x1) = 1.5 

x3 = f(x2) = 1.75 

x4 = f(x3) = 1.875 

x5 = f(x4) = 1.9375 

x6 = f(x5) = 1.96875 

x7 = f(x6) = 1.984375 

x8 = f(x7) = 1.9921875 

In this example, f(x) was actually defined as 1 2x+1. The exact fixed point is 2, and the 

iterative solution was converging upon this value. Iteration is by no means guaranteed to find 

a fixed point. Not all functions have a single fixed point. Functions may have no fixed point, 

many fixed points, or an infinite number of fixed points. Even if a function has a fixed point, 

iteration may not necessarily converge upon it. In the above example, we were able to 

associate a fixed point value with a function. If we were given only the function, we would be 

able to recompute the fixed point value. Put differently, if we wish to transmit a value, we 

could instead transmit a function that iteratively converges on that value. 

This is the idea behind fractal compression. However, we are not interested in transmitting 

simple numbers, like “2”. Rather, we wish to transmit entire images. Our fixed points will be 

images. Our functions, then, will be mappings from images to images. Our encoder will 

operate roughly as follows: 

1. Given an image, i, from the set of all possible images, Image. 

2. Compute a function f : Image ! Image such that f(i) _ i. 
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3. Transmit the coefficients that uniquely identify f. 

  

Figure 3.13: Identifying self-similarity.  

Range blocks appear on the left; one domain block appears on the left. The arrow identifies 

one of several collage function that would be composited into a complete image. 

Our decoder will use the coefficients to reassemble f and reconstruct its fixed point, the image: 

1. Receive coefficients that uniquely identify some function f : Image ! Image. 

2. Iterate f repeatedly until its value converges on a fixed image, i. 

3. Present the decompressed image, i. 

Clearly we will not be using entirely arbitrary functions here. We want to choose functions 

from some family that the encoder and decoder have agreed upon in advance. The members of 

this family should be identifiable simply by specifying the values for a small number of 

coefficients. The functions should have fixed points that may be found via iteration, and must 

not take unduly long to converge. The function family we choose is a set of “collage 

functions”, which map regions of an image to similar regions elsewhere in the image, 

modified by scaling, rotation, translation, and other simple transforms. This is vaguely similar 

to the search for similar macroblocks in MPEG P-frame and B-frame encoding, but with a 

much more flexible definition of similarity. Also, whereas MPEG searches for temporal self-

similarity across multiple images, fractal compression searches for spatial self similarity 

within a single image. Figure 3.13 shows a simplified example of decomposing an image info 

collages of itself. Note that the encoder starts with the subdivided image on the right. For each 

“range” block, the encoder searchers for a similar “domain” block elsewhere in the image. We 

generally want domain blocks to be larger than range blocks to ensure good convergence at 

decoding time. 
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3.4.3 Model-Based Compression: 

We briefly present one last transform coding scheme, model-based compression. The idea 

here is to characterize the source data in terms of some strong underlying model. The popular 

example here is faces. We might devise a general model of human faces, describing them in 

terms of anatomical parameters like nose shape, eye separation, skin color, cheekbone angle, 

and so on. Instead of transmitting the image of a face, we could transmit the parameters that 

define that face within our general model. Assuming that we have a suitable model for the data 

at hand, we may be able to describe the entire system using only a few bytes of parameter 

data. Both sender and receiver share a large body of a priori knowledge contained in the model 

itself (e.g., the fact that faces have two eyes and one nose). The more information is shared in 

the model, the less need be transmitted with any given data set. Like wavelet compression, 

model-based compression works by characterizing data in terms of a deeper underlying 

generator. Model-based encoding has found applicability in such areas as computerized 

recognition of four-legged animals or facial expressions 
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CHAPTER 4 

METHODOLOGY 

In this thesis we use FFT, DCT, DCT-II,DST and BLASCHKE UNWINDING AFD 

transformations for ECG data compression. 

4.1 Discrete Cosine Transform(DCT): 

The Discrete Cosine Transform (DCT) was developed to approximate Karhunen-Loeve 

Transform (KLT) when there is high correlation among the input samples, which is the case in 

many digital waveforms including speech, music, and biomedical signals. The DCT D = [d0 d1 

d2 d3………..dN1-1]
T Of the vector x is defined as follows 

 

d0= 
1

√𝑁
∑ 𝑥𝑛1

𝑁−1
𝑛=0                     (4.1) 

 

               dk = √
2

𝑁
 ∑ 𝑥𝑛1

𝑁−1
𝑛1=0 𝑐𝑜𝑠

(2𝑛1+1)𝐾𝜋

2𝑁
 ,           k = 1,2,…………….. N-1    (4.2)  

 

Where dk  is the kth DCT coefficient. The inverse discrete cosine transform (IDCT) of d is 

given by 

 

       𝑥𝑛1 
=  

1

√𝑁
𝑑0 + √

2

𝑁
 ∑ 𝑑𝑘

𝑁−1
𝑘=0 𝑐𝑜𝑠

(2𝑛1+1)𝐾𝜋

2𝑁
   n1=0,1,2………………..N-1    (4.3) 

 

There exist fast algorithms, Order (NlogN), to compute the DCT .Thus, DCT can be 

implemented in a computationally efficient manner. Two recent image and video coding 

standards, JPEG and MPEG, use DCT as the main building block. A discrete cosine transform 

(DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions 

oscillating at different frequencies. DCTs are important to numerous applications in science 

and engineering, from lossy compression of audio (e.g. MP3) and images (e.g. JPEG) (where 

small high frequency components can be discarded), to spectral methods for the numerical 
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solution of partial differential equations. The use of cosine rather than sine functions is critical 

in these applications. For compression, it turns out that cosine functions are much more 

efficient whereas for differential equations the cosines express a particular choice of boundary 

conditions. In particular, a DCT is a Fourier-related transform similar to the discrete Fourier 

transform (DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly twice 

the length, operating on real data with even symmetry (since the Fourier transform of a real 

and even function is real and even), where in some variants the input and/or output data are 

shifted by half a sample. Discrete Cosine Transform is a basis for many signal and image 

compression algorithms due to its high decorrelation and energy compaction property. A 

discrete Cosine Transform of N sample is defined as  

 

              𝐹(𝑢) =   √
2

𝑁
 𝐶(𝑢) ∑ 𝑓(𝑥1)𝑁−1

𝑥1=0 𝑐𝑜𝑠
(2𝑥1+1)𝑢𝜋

2𝑁
      u = 0,1,2……………..N-1     (4.4) 

 

Where                                

                                                   𝐶(𝑢) = {
1

√2
, 𝑓𝑜𝑟 𝑢 = 0

1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

 

The function f(x) represents the value of xth samples of input signals. F(u) represents DCT 

coefficients. The inverse DCT is defined in similar fashion as   

              𝑓(𝑥1) =   √
2

𝑁
 𝐶(𝑢) ∑ 𝐶(𝑢)𝑁−1

𝑢=0 𝐹(𝑢)𝑐𝑜𝑠
(2𝑥1+1)𝑢𝜋

2𝑁
   x1 = 0,1,2…………N-1      (4.5) 

 

4.2 Discrete Sine Transform: 

Discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier 

transform (DFT), but using a purely real matrix. It is equivalent to the imaginary parts of a 

DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier 

transform of a real and odd function is imaginary and odd), where in some variants the input 

and/or output data are shifted by half a sample. Like any Fourier-related transform, discrete 

sine transforms (DSTs) express a function or a signal in terms of a sum of sinusoids with 

different frequencies and amplitudes. Like the discrete Fourier transforms (DFT), a DST 
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operates on a function at a finite number of discrete data points. The obvious distinction 

between a DST and a DFT is that the former uses only sine functions, while the latter uses 

both cosines and sines (in the form of complex exponentials). However, this visible difference 

is merely a consequence of a deeper distinction: a DST implies different boundary conditions 

than the DFT or other related transforms. 

Formally, the discrete sine transform is a linear, invertible function F: RN -> RN (where R 

denotes the set of real numbers), or equivalently an N × N square matrix. There are several 

variants of the DST with slightly modified definitions. The N real numbers 𝑥0,….𝑥𝑁−1 are 

transformed into the N real numbers 𝑋0,…..𝑋𝑁−1 according to 

 

               Xk =  ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝑠𝑖𝑛

𝜋

𝑁+1
(𝑛 + 1)(𝑘 + 1)           k =0,1,…….. N-1      (4.6) 

 

4.3 Fast Fourier Transform (FFT) : 

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier 

transform (DFT) and it’s inverse. There are many distinct FFT algorithms involving a wide 

range of mathematics, from simple complex-number arithmetic to group theory and number 

theory. A DFT decomposes a sequence of values into components of different frequencies but 

computing it directly from the definition is often too slow to be practical. An FFT is a way to 

compute the same result more quickly. Computing a DFT of N points in the naive way, using 

the definition, takes O(N2) arithmetical operations , while an FFT can compute the same result 

in only O(N log N) operations.  

Fast Fourier Transform is a fundamental transform in digital signal processing with 

applications in frequency analysis, signal processing etc. The periodicity and symmetry 

properties of DFT are useful for compression. The uth FFT coefficient of length N sequence 

{f(x)} is defined as 

  𝐹(𝑢) =   ∑ 𝑓(𝑥)𝑁−1
𝑥=0 𝑒

−𝑗2𝜋𝑢𝑥

𝑁       u = 0,1,2……………..N-1           (4.7) 

 

And its inverse transform is calculated from 

  𝑓(𝑥) =   
1

𝑁
 ∑ 𝐹(𝑢)𝑁−1

𝑢=0 𝑒
𝑗2𝜋𝑢𝑥

𝑁       x = 0,1,2………. N-1                     (4.8)      
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4.4. Discrete Cosine Transform–II (DCT – II): 

The most common variant of discrete cosine transform is the type-II DCT [54]. The DCT-II is 

typically defined as a real, orthogonal (unitary), linear transformation by the formula 

 

𝐶𝑘
𝐼𝐼=√

2−𝛿𝑘,0

𝑁
∑ 𝑥𝑛

𝑁−1
𝑛=0 𝑐𝑜𝑠 [

𝜋

𝑁
(𝑛 +

1

2
) 𝑘]                 (4.9) 

 

for N inputs 𝑥𝑛 and N outputs 𝐶𝑘
𝐼𝐼, where 𝛿𝑘,0 is the Kronecker delta (= 1 for k = 0 and = 0 

otherwise). DCT-II can be viewed as special case of the discrete Fourier transform (DFT) with 

real inputs of certain symmetry. This viewpoint is fruitful because it means that any FFT 

algorithm for the DFT leads immediately to a corresponding fast algorithm for the DCT-II 

simply by discarding the redundant operations. The discrete Fourier transform of size N is 

defined by 

                 𝑋𝐾= ∑ 𝑥𝑛
𝑁−1
𝑛=0                                        (4.10) 

where 𝜔𝑁=𝑒−2𝜋𝑖𝑁 is an Nth primitive root of unity. In order to relate this to the DCT-II, it is 

convenient to choose a different normalization for the latter transform as 

 

            𝐶𝐾= 2 ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝑐𝑜𝑠 [

𝜋

𝑛
(𝑛 +

1

2
) 𝑘]                        (4.11) 

                            2cos(
𝜋𝑙

𝑁
)= 𝜔4𝑁

2𝑙 + 𝜔4𝑁
4𝑁−2𝑙                      (4.12) 

               𝐶𝐾= 2 ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝑐𝑜𝑠 [

𝜋

𝑁
(𝑛 + 1)𝑘]                       (4.13) 

 

 𝐶𝐾=  ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝜔4𝑁

(2𝑛+1)𝑘
+ ∑ 𝑥𝑛

𝑁−1
𝑛=1 𝜔4𝑁

(4𝑁−2𝑛−1)𝑘
           (4.14) 

 

Thus, the DCT-II of size N is precisely a DFT of size 4N, of real-even inputs, where the even-

indexed inputs are zero. 
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4.5 Splines and B-splines: 

A spline function consists of polynomial pieces on subintervals joined together by continuity 

conditions.The segmented nature allows splines to adjust very efficiently to the local 

characteristics of the data and represent it better (i.e. with smaller deviations) than other 

classes of functions. 

Definition 4.5.1. A function f(x), defined on a finite interval [a, b], is called a spline function 

of order k > 0,having as knots the sequence t = {t0,t1,. . . ,tn+l}(t0 = a, & tn+l = b) such that ti < 

ti+k (the knots coordinates ti may not be distinct), if the following two conditions are satisfied: 

1. In each knot interval [t<, ti+l], f(x) is given by a polynomial of degree k - 1 at most. 

2. At any knot ti such that ti-1 < ti =… = ti+l < ti+l+1, the function f(x) has continuous k - l - 2 

derivatives (and is discontinuous at ti if 𝑙 = k - 1). 

The vector space of functions satisfying Definition 2.1 will be denoted by Sk,t. The dimension 

of the Vector space  Sk,t is 

      dim(Sk,t) = n + k                      (4.15) 

To perform computations with splines, one must choose a suitable representation in which any 

member of Sk,t can be written as a unique linear combination of n + k basis functions such that 

Definition 4.2.1 is automatically satisfied. A common choice is to use B-splines. 

Computations with B-splines are particularly convenient, due to their local-support 

property,i.e. they are nonzero only over a finite interval, Moreover, B-splines are a unique 

minimum-support basis  the only set of basis functions in which each covers the minimum 

number of knots. Using B-splines, curve-fitting problems are easy to pose and lead to well-

conditioned, banded positive-definite systems. They also provide an easy to manipulate 

representation for splines having different degrees of smoothness at each knot. 

 

Definition 4.2.2. A B-spline Bi,k,t(x) of order k > 0,with knots ti, . . , ti+k, can be defined using 

the following recurrence relation: 

Bi,1,t(𝑥) = {
1, 𝑖𝑓 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (4.16) 

and 
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Bi,k,t(𝑥)= 
𝑡𝑖+𝑟−𝑥

𝑡𝑖+𝑟−𝑡𝑖+1
𝐵𝑖+1,𝑟−1,𝑡(𝑥) +

𝑥−𝑡𝑖

𝑡𝑖+𝑟−1−𝑡𝑖
𝐵𝑖,𝑟−1,𝑡(𝑥)         (4.17) 

 

for r = 2,3,. . . , k, where we interpret the terms 

𝑡𝑖+𝑟 − 𝑥

𝑡𝑖+𝑟 − 𝑡𝑖+1
 𝑎𝑛𝑑 

𝑥 − 𝑡𝑖

𝑡𝑖+𝑟−1 − 𝑡𝑖
 

as zero whenever 𝑡𝑖+𝑟 − 𝑡𝑖+1= 0 and 𝑡𝑖+𝑟−1 − 𝑡𝑖 = 0, respectively. 

From this definition one can observe that B-splines have local support 

                                                𝐵𝑖,𝑘,𝑡(𝑥) = 0 𝑖𝑓 𝑥 ∈ [𝑡𝑖 , 𝑡𝑖+𝑘]           (4.18)   

𝑡−𝑘+1 ≤ 𝑡−𝑘+2 ≤ ⋯ 𝑡−1 ≤ 𝑡0 = 𝑎, 

b= 𝑡𝑛+1 ≤  𝑡𝑛+2  ≤ …………𝑡𝑛+𝑘−1 ≤  𝑡𝑛+𝑘 

but which are otherwise arbitrary. Every function f(x) satisfying Definition 4.2.1 then has a 

unique representation (the Curry-Schoenberg Theorem) 

           f(x)= ∑ 𝑎𝑖
𝑛
𝑖=−𝑘+1 𝑐,                     (4.19) 

in which 𝑎𝑖 is called the ith B-spline coefficient of f(x). The upper bound for the absolute 

value of the spline function f(x) is given by [55] 

max
𝑥

|𝑓(𝑥)| ≤  max
𝑖

|𝑎𝑖|     (4.20) 

The most common choice for boundary knots are coincident knots 

𝑡−𝑘+1 = 𝑡−𝑘+2 = ⋯ 𝑡−1 = 𝑡0 = 𝑎, 

b= 𝑡𝑛+1 =  𝑡𝑛+2  = …………𝑡𝑛+𝑘−1 = 𝑡𝑛+𝑘 

This choice implies that all B-splines vanish outside the interval [a, b] and allows very easily 

to impose the boundary conditions 

𝑓(𝑎) = 𝑎−𝑘+1       𝑓(𝑏) =  𝑎𝑛             (4.21) 

The knots t1,..., tn are called interior knots, and in the data reduction scheme, these are the only 

knots which can be eliminated by the knot removal algorithm. One of the most powerful tools 

in studying B-splines also used extensively in this algorithm is an explicit formula which 

allows us to write basis functions 𝐵𝑖,𝑘,𝜌(𝑥) defined for the knot sequence 𝜌 = t\{tp}, t = {t-k+1,. 

. .,t,n+k}, in terms of basis functions 𝐵𝑖,𝑘,𝑡(𝑥)  defined for t [56]: 

 



Performance Analysis of ECG Data compression Technique 

                                                                         
 

Department of Electronics and Communication Engineering   41 

𝑓(𝑥) =  {

𝐵𝑖,𝑘,𝑡(𝑥),                                         𝑖𝑓 𝑖 ≤ 𝑝 − 𝑘 − 1
𝑡𝑖+𝑟−𝑥

𝑡𝑖+𝑟−𝑡𝑖+1
𝐵𝑖+1,𝑟−1,𝑡(𝑥) +

𝑥−𝑡𝑖

𝑡𝑖+𝑟−1−𝑡𝑖
𝐵𝑖,𝑟−1,𝑡(𝑥)

𝐵𝑖+1,𝑘,𝑡(𝑥),                                     𝑖𝑓 𝑝 ≤ 𝑖 ≤ 𝑛 − 1

  𝑖𝑓 𝑝 − 𝑘 ≤ 𝑖 ≤ 𝑝 − 1          (4.22) 

 

4.6: Continuous Hermite functions: 

Consider the family of polynomials 𝐻𝑙(𝑥), 𝑙 ≥ 0, that satisfy the recursion 

 

𝐻𝑙(𝑡) =  2𝑡𝐻𝑙−1(𝑡) − 2(𝑙 − 1)𝐻𝑙−2(𝑡)                        (4.23) 

 

Fig. 4.1. First four Hermite functions (plotted for the same scale σ). 

 

for 𝑙 ≥ 2, with H0(t) = 1 and 𝐻𝑙(𝑡) = 2t. They are known as Hermite polynomials. These 

polynomials are orthogonal on the real line ℝ with respect to the weight function 𝑒𝑡2
: 

∫ 𝐻𝑙(𝑡) 𝐻𝑚(𝑡) 𝑒𝑡2
𝑑𝑡 = 2𝑙∞

−∞
𝑙! √𝜋𝛿𝑙−𝑚                   (4.24) 

𝜑𝑙(𝑡, 𝜎) =
1

√𝜎2𝑙𝑙!√𝜋
𝑒

−𝑡2

2𝜎2⁄
𝐻𝑙(𝑡/𝜎)                     (4.25) 

are orthonormal on ℝ with respect to the standard inner product 

〈𝜑𝑙(𝑡, 𝜎), 𝜑𝑚(𝑡, 𝜎)〉 =  ∫ 𝜑𝑙(𝑡, 𝜎), 𝜑𝑚(𝑡, 𝜎)𝑑𝑡 = 𝛿𝑙−𝑚       (4.26) 

The set of functions {ϕℓ(t, σ)}ℓ≥0, called continuous Hermite functions, is an orthonormal 

basis in the Hilbert space of continuous functions defined on ℝ [57]–[58]. Any such function 

s(t) can be represented as a linear combination of the basis functions 

              s(t)= ∑ 𝑐𝑙𝑙≥0 𝜑𝑙(𝑡, 𝜎)            (4.27) 

where 
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𝑐𝑙 = 〈𝑠(𝑡), 𝜑𝑙(𝑡, 𝜎)〉 = ∫ 𝑠(𝑡), 𝜑𝑙(𝑡, 𝜎)𝑑𝑡             (4.28) 

The first four continuous Hermite functions are shown in Fig. 4.1. Notice that each ϕℓ(t, σ) 

quickly approaches zero as the value of |t| increases: since Hℓ(t/σ) is a polynomial of degree ℓ, 

lim
|𝑡|→∞

𝑒
−𝑡2

2𝜎2⁄
𝐻𝑙(𝑡/𝜎)= 0.                 (4.29) 

As a consequence, for practical purposes we can assume that each continuous Hermite 

function has a compact support. Since in this thesis we often work only with the first L 

continuous Hermite functions, we assume that 𝜑0(𝑡, 𝜎), 𝜑1(𝑡, 𝜎). . . , 𝜑𝐿−1(𝑡, 𝜎)have the same 

compact support [−Tσ, Tσ], where Tσ is a suitably chosen constant that depends on σ and L. In 

other words, we assume 

𝜑𝑙(𝑡, 𝜎) = 0 𝑓𝑜𝑟 𝑡 ∈ [−𝑇𝜎, 𝑇𝜎],        (4.30) 

     where 0 ≤ ℓ < L. If a signal s(t) also has a compact support of [−Tσ, Tσ], then we can compute 

the coefficients cℓ using a finite integral: 

𝑐𝑙 = ∫ 𝑠(𝑡), 𝜑𝑙(𝑡, 𝜎)𝑑𝑡 =  ∫ 𝑠(𝑡), 𝜑𝑙(𝑡, 𝜎)𝑑𝑡
𝑇𝜎

−𝑇𝜎
        (4.31) 

 

 

4.7 Blaschke unwinding AFD:  

Algorithm 1 illustrates how the Blaschke unwinding AFD is applied to compress a real-valued 

signal. First, the input real-valued signal F is projected to H2 space and we get F+. In practice, 

we could safely assume that 

 

                       2ℜ𝐹+ = 𝐹 +  𝑐0                             (4.32) 

 

holds, where  ℜ means taking the real part and c0 is the zeroth Fourier coefficient of F. c0 is 

the first data point we save for the signal compression, and F+ is initialized as the first 

remainder F1. 

Algorithm I : Blaschke Unwinding AFD based Compression 

Input: Real-valued input signal F, sets of parameters a∈ D 

and the decomposition level N. 
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Output: {𝑐𝑛}𝑛=1
𝑁 , {𝑎𝑛}𝑛=1

𝑁   and a finite number of zeros {{𝑟𝑛𝑗
}

𝑗=1

𝑀𝑛

}
𝑛=1

𝑁

 

l: Get the projection signal F+of F in the Hardy space. 

2: Initialize Fl = F+. 

3: for n = 1 to N do. 

4: Obtain the inner function In and outer function On of Fn so that Fn = In On; 

5: Get zeros {𝑟𝑛𝑗
}

𝑗=1

𝑀𝑛

, of In by Algorithm 2; 

6: Get an = arg max{(1-|a|2)|On(a)|2:a∈ ⅅ}; 

7: Get cn = 〈𝑂𝑛𝑒𝑎𝑛
〉; 

8: Get Fn+1 = 
𝐹𝑛−𝑐𝑛𝐼𝑛𝑒𝑎𝑛

𝐼𝑛

1−𝑎𝑛̅̅ ̅̅ 𝑧

𝑧−𝑎𝑛
; 

9: return {𝑐𝑛}𝑛=1
𝑁 , {𝑎𝑛}𝑛=1

𝑁 , {{𝑟𝑛𝑗
}

𝑗=1

𝑀𝑛

}
𝑛=1

𝑁

. 

 

 Second, extract the inner function by calculating zeros of F1 by the method introduced in [59], 

where we assume that F1 has finite roots on ⅅ̅ := {z ∈ Cǀ ‖𝑧‖ ≤ 1} [59]. The detailed steps of 

numerical calculation for calculating zeros of F1 are performed in Algorithm 2. Then 

accordingly, get the outer function O1 by the Nevanlinna factorization. Third, The set of {an}, 

n = 1, 2, . . . , in  consisting of discrete points in ⅅ is generated by dividing ⅅ into rectangular 

grid to get the TM system  and evaluators {ea} . Then, the decomposition of O1 is based on the 

TM system. During the decomposition, the maximal selection principle is applied in the 

selection of a1 with the aid of evaluators. Suppose the decomposition level is N ∈ N. Iterate 

the above three steps, each on the remainder of the previous step, for N times, and we end up 

with {𝑒𝑎𝑛
 }, the modified Blaschke products {Bn}, and Mn zeros, for n = 1, . . .  N. As a result, 

we obtain 2N + 1 parameters, including{𝑐𝑛}𝑛=0
𝑁 , and {𝑎𝑛}𝑛=1

𝑁   , as well as ∑ 𝑀𝑛
𝑁
𝑛=1  zeros. cn 

and an, where n = 1, . . .  N, as well as ∑ 𝑀𝑛
𝑁
𝑛=1  zeros, are other data points we save for the 

data compression. 

Algorithm II: Procedure for calculating zeros 
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Input: F, 𝛿 > 0  

Output: zeros of F, {𝑟𝑛𝑗
}

𝑗=1

𝑀𝑛

 

l: Determine for M, M= 
1

2𝜋𝑖
∫

𝐹′(𝑧)

𝐹(𝑧)

 

|𝑧|=1
𝑑𝑧  

2: Initialize G1 : F 

3: for j = 1 to M1 do. 

4: Evaluate  arg min
𝑧∈ⅅ1−𝛿

|𝐺𝑗(𝑧)| ; 

5: Get rj satisfying 𝐺𝑗(𝑟𝑗) = 0; 

6: Get 𝐺𝑗+1 ≔  𝐺𝑗
1−𝑟𝑗𝑧

𝑧−𝑟𝑗
 ; 

7: return {𝑟𝑗}
𝑗=1

𝑀𝑛
. 
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CHAPTER 5 

RESULT ANALYSIS 

 

We used data in the MIT-BIH database to test the performance of the six coding 

techniques. The ECG data is sampled at 142Hz and the resolution of each sample is 

11bits/samples. The amount of compression is measured by CR and the distortion between 

the original and reconstructed signal is measured by PRD. A data compression algorithm 

must represent the data with acceptable fidelity while achieving high CR. 

5.1 Performance Evaluation: 

The effectiveness of an ECG compression technique is described in terms of: Percentage 

Mean Square Difference (PRD) and Compression Ratio (CR). 

5.1.1 Compression Ratio (CR): 

CR is the ratio of the original data to compressed data without taking into account factors 

such as bandwidth, sampling frequency, precision of the original data, word- length of 

compression parameters, reconstruction error threshold, database size, lead selection, 

and noise level. It is given by: 

CR = Bit rate of original file / Bit rate of reconstructed file ……………… (5.1) 

That is, Higher the CR, smaller the size of the compressed file. 

5.1.2. Percentage Mean Square Difference (PRD): 

Percentage Mean Square Difference (PRD) is a measure of error loss. This measure 

evaluates the distortion between the original and the reconstructed signal. 

PRD calculation is as follows: 

                               PRD =√
∑(𝑋𝑖−𝑋𝑖2)2

∑ 𝑋𝑖
2 ……………………………   (5.2) 

Where Xi is the original file and Xi1 is its reconstructed version. 

We used data in the CSE database to test the performance of the five coding techniques. 

The ECG data is sampled at 333 Hz. The amount of compression is measured by CR and 

the distortion between the original and reconstructed signal is measured by PRD.  
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5.2  Compression Algorithm: 

5.2.1  FFT: 

➢  Separate the ECG components into three components x, y, z. 

➢ Find the frequency and time between two samples. 

➢ Find the FFT of ECG signal and check for FFT coefficients (before compression) 

             = 0, increment the counter A if it is between +25 to-25 and assign to Index=0. 

➢ Check for FFT coefficients (after compression) =0, increment the Counter B. 

➢ Calculate inverse FFT and plot decompression, error. 

➢ Calculate the compression ratio CR and PRD. 

Figure 5.1 shows the original ECG signal record 100 which are selected from MIT-

BIH arrhythmia database and its reconstructed waveform when compressed by FFT. 

 

 

Figure 5.1 FFT compression of MIT-BIH record 100 
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Limitation of FFT is it fails to provide the information regarding the exact location 

of frequency component in time 

5.2.2. Discrete Cosine Transform (DCT): 

➢ Separate the ECG components into three components x, y, z. 

➢ Find the frequency and time between two samples. 

➢ Find the DCT of ECG signal and check for DCT coefficients (before compression) 

             = 0, increment the counter A if it is between +0.22 to-0.22 and assign to Index=0. 

➢ Check for DCT coefficients (after compression) =0, increment the Counter B. 

➢ Calculate inverse DCT and plot decompression, error. 

➢ Calculate the compression ratio CR and PRD. 

Fig.5.2 shows the original ECG signal record 100 which are selected from MITBIH 

arrhythmia database and its reconstructed waveform when compressed by DCT. 

 

 

Figure 5.2 DCT compression of MIT-BIH record 100 
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➢ Limitation of DCT: 

Distortion is more in reconstructed signal. 

5.2.3. Discrete sine Transform (DST): 

➢ Separate the ECG components into three components x, y, z. 

➢ Find the frequency and time between two samples. 

➢ Find the DST of ECG signal and check for DST coefficients (before compression) 

             = 0, increment the counter A if it is between +15 to - 15 and assign to Index=0. 

➢ Check for DST coefficients (after compression) =0, increment the Counter B. 

➢ Calculate inverse DST and plot decompression, error. 

➢ Calculate the compression ratio CR and PRD. 

Figure 5.3 shows the original ECG signal record 100 which are selected from MIT-

BIH arrhythmia database and its reconstructed waveform when compressed by DST. 

 

Figure 5.3 DST compression of MIT-BIH record 100 
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 5.2.4. Discrete Cosine Transform-2 (DCT-2): 

➢ Partition of data sequence x in Nb consecutive blocks bi, i =0, 1, ¼.., Nb-1, each one 

with Lb samples. 

➢ DCT computation for each block. 

➢ Quantization of the DCT coefficients. 

➢ Lossless encoding of the quantized DCT coefficients. 

Figure 5.4 shows the original ECG signal record 100 which are selected from MIT-BIH 

arrhythmia database and its reconstructed waveform when compressed by DCT-2. 

 

Figure 5.4 DCT-2 compression of MIT-BIH record 100 

 

5.2.5. Blaschke unwinding AFD: 

The compression consists of two steps. The first step carries out the Hardy projection and the 

Blaschke unwinding AFD compression. The second step is the lossless Huffman encoding. 
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For the decompression, it is the inverse of the compression, including the Huffman decoding 

and the inverse Blaschke unwinding AFD process. 

 

 

 

Figure:5.5 Waveforms of original, reconstructed and error signals with N = 8  taken from 

record 100 

Figure:5.6 Waveforms of original, reconstructed and error signals with N = 10  taken from 

record 100 
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           The comparison table shown in Table 5.1 details the resultant compression techniques. 

This gives the choice to select the best suitable compression method. A data compression 

algorithm must represent the data with acceptable fidelity while achieving high CR. As the 

PRD indicates reconstruction fidelity; the increase in its value is actually undesirable. 

Blaschke unwinding AFD which leads to a high compression rate with a high fidelity. 

Compared with existing algorithms, like FFT, DCT, DST and DCT-2. 

 

 

Table 5.1 Comparision of resultant compression techniques 

 

Method CR PRD 

FFT 16.01 1.10 

DCT 

 

16.87 1 

DST 

 

11.62 1.19 

DCT2 

 

22.21 1.27 

Blaschke unwinding 

AFD(N=8) 

39.34 0.71 

Blaschke unwinding 

AFD(N=10) 

26.09 0.57 
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CONCLUSION 

 

Among the five techniques presented, DST provides lowest CR and distortion is also high. 

DCT improves CR and lowers PRD. Next is FFT which gives CR 16.01 with PRD as 1.10. 

But DCT-II provides an improvement in terms of CR of 22.21 but PRD increases up to 1.27. 

Thus an improvement of a discrete cosine transform (DCT)-based method for 

electrocardiogram (ECG) compression is presented as DCT-II in terms of amount of 

compression. From table 5.1 we can observe that using Blaschke unwinding AFD based 

compression we are getting higher compression rate in comparision to other compression 

technique. Hence this technique is better than other ECG compression technique in both point 

of consideration. 
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Appendix A 

The MIT-BIH Arrhythmia Database 

The database used in this work is a collection of files from the MIT-BIH Arrhythmia Database 

CD-ROM (third edition) [Moody, 1997]. 

The source of the ECGs included in the MIT-BIH Arrhythmia Database is a set of over 4000 

long-term Holter recordings that were obtained by the Beth Israel Hospital Arrhythmia  

Laboratory between 1975 and 1979. Approximately 60% of these recordings were obtained 

from inpatients. The database contains 23 records (numbered from 100 to 124 inclusive with 

some numbers missing) chosen at random from this set, and 25 records (numbered from 200 

to 234 inclusive, again with some numbers missing) selected from the same set to include a 

variety of rare but clinically important phenomena that would not be well-represented by a 

small random sample of Holter recordings. 

The first group is intended to serve as a representative sample of the variety of waveforms and 

artifact that an arrhythmia detector might encounter in routine clinical use. A table of random 

numbers was used to select tapes, and then to select half-hour segments of them. Segments 

selected in this way were excluded only if neither of the two ECG signals was of adequate 

quality for analysis by human experts. 

Records in the second group were chosen to include complex ventricular, junctional, and 

supraventricular arrhythmias and conduction abnormalities. Several of these records were 

selected because features of the rhythm, QRS morphology variation, or signal quality may be 

expected to present significant difficulty to arrhythmia detectors; these records have gained 

considerable notoriety among database users. 

The subjects were 25 men aged 32 to 89 years, and 22 women aged 23 to 89 years. Records 

201 and 202 came from the same male subject. Each record in this directory is slightly over 30 

minutes in length. Each signal file contains two channels of ECG signals sampled at 360 Hz. 

Each sample is represented by 12-bit two’s complement amplitude. To each signal file a 

header file and a reference annotation file are attached. The header files include information 

about the leads used, the patient’s age, sex, and medications. The reference annotation files 

include beat, rhythm, and signal quality annotations. 
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Abstract- ECG can identify the electrical activity of the heart. 

A muscular organ, the heart rhythmically pumps blood 

throughout the body. It's necessary to send and store large 

signal data. The ECG signal data must then be effectively 

compressed. In this article, we compared the effectiveness of 

various ECG compression techniques.These techniques are 

crucial for lowering communicated data size without losing 

clinical information. Discrete Cosine Transform (DCT), 

Discrete Sine Transform (DST), Fast Fourier Transform 

(FFT), the enhanced method Discrete Cosine Transform- II 

(DCT-II), and Blaschke unwinding AFD are the 

transformation methods on which these schemes are based.We 

test records that have been chosen from the MIT-BIH 

arrhythmia database. Percent Root Mean Square Differences 

(PRD) and Compression Ratio (CR) are used to evaluate 

performance. 

 

Keywords- ECG, DCT, DST, FFT, DCT-II, Blaschke 

unwinding AFD 

 

I. INTRODUCTION 

 

 Electrocardiographic signals may be recorded on a 

long timescale (i.e., several days) for the purpose of 

identifying intermittently occurring disturbances in the heart 

rhythm. As a result, the produced ECG recording amounts to 

huge data sizes that quickly fill up available storage space. 

Transmission of signals across public telephone networks is 

another application in which large amounts of data are 

involved. For both situations, data compression is an essential 

operation and, consequently, represents yet another objective 

of ECG signal processing. Signal processing has contributed 

significantly to a new understanding of the ECG and its 

dynamic properties as expressed by changes in rhythm and 

beat morphology. For example, techniques have been 

developed that characterize oscillations related to the 

cardiovascular system and reflected by subtle variations in 

heart rate. ECG Data Compression is required to reduce the 

disk space required to store the data, as ECG is a continuous 

data taken for a very long interval of time. Also by 

compressing redundant data from the signal can be removed 

which actually takes considerably large area in memory. The 

need of signal transmission over telephone lines or antenna for 

remote analysis makes the compression and data 

reconstruction of the signal an important issue in signal 

processing. ECG is a graphic display of the electrical activity 

of the heart. Due to low cost and noninvasion, ECG signal has 

been extended for heart disease diagnosis and ambulatory 

monitoring. For storage and transmission of large signal data, 

it is necessary to compress the ECG signal data. Data 

compression has its application in many fields and so as in the 

field of medical science. ECG is an important parameter that 

measures patient’s health and reports abnormalities if any. 

This thesis has done a survey of various kinds of ECG data 

compression techniques. Recently, numerous research and 

techniques have been developed for compression of the signal. 

These techniques are essential to a variety of application 

ranging from diagnostic to ambulatory ECG’s. Thus, the need 

for effective ECG compression techniques is of great 

importance. The non-invasive extraction of physiological and 

clinical information hidden in biomedical signals is an 

important and fascinating field of research. Non-invasive 

assessment of the physiological parameters of a patient 

enables to study the physiology and patho-physiology of the 

investigated system, with minimal interference and 

inconvenience. Endogenous biomedical signals from 

physiological systems are acquired for a number of reasons 

including diagnosis, post surgical intensive care monitoring, 

neonatal monitoring and guide therapy and for research. The 

electrocardiogram (ECG) is a non- stationary signal containing 

information about the physiological condition of the heart. The 

electrical activity of the heart depicts the morphology and 

durations of the P-QRS- T intervals (Figure 1). The P, QRS 

complex and T features of ECG reveal the rhythmic 

depolarization and re polarization of the myocardium 

contractions of heart’s atria and ventricles [1]. The time 

intervals between various peaks contain clinical information 

about the nature of possible disease afflicting a heart [2]. 

 

Due to low cost and non-invasion, ECG signal has 

been extended for heart disease diagnosis and ambulatory 

monitoring resulting in enormous volume of the data. In 

course of a 24-h ECG observation or multichannel biological 

signal acquisition, real-time data compression methods are 

required for the effective use of communications channels 

such as wired channel, wireless environment and cloud 
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computing. The ECG data compression is also required for the 

transmission of ECG signals across intensive care units, 

emergency tele-medical services, telemedicine, home care, 

space programs, sports, military, public telephone networks, 

cellular networks and wireless communication systems [4-5]. 

ECG is having possibility of redundant information reduction 

through inter and intra beat correlation, which is the basic 

cause of its compression [6]. The fundamental goal of data 

compression is efficient transmission or storage while 

preserving the significant diagnostic features. 

 

In general, ECG compression can be classified into 

lossy and lossless techniques [7]. The lossless compression 

guarantee the integrity of reconstructed data while 

compromised compression ratio (CR), with nearly 0% 

reconstruction error, on the other hand lossy compression is 

having high CR with varying level of reconstruction error [6]. 

 

ECG signal compression techniques widely fall into 

three categories of direct method, transformation method and 

parameter extraction method [7, 8]. The direct data 

compression method openly analyzes and reduces data points 

in the time domain and the example includes turning point 

(TP) [25], amplitude zone time epoch coding (AZTEC) [3], 

Improved modified AZTEC technique [9], coordinate 

reduction time encoding system (CORTES) [48], SLOPE [10], 

the delta algorithm and the Fan algorithm [11]. The 

transformed method analyzes energy distribution by 

converting the time domain to some other domain and 

example includes Fourier transform, Fourier descriptor [12], 

the discrete cosine transform (DCT) [13], DCT with modified 

stages [14, 15] and wavelet transform [16], and the 

compressed sensing [17]. The parameter extraction method is 

based upon dominant feature extraction from raw signal; 

examples include neural based or syntactic methods [18],peak 

picking and linear prediction method [19]. The other methods 

for compression includes ASCII based encoding for 

incorporation of ECG data as ASCII character in existing 

technology [20-23]. 

 
Fig 1 : Time intervals of ECG 

 
Fig. 2 Block diagram of transform based compression method 

 

ECG Data Compression is required to reduce the disk 

space required to store the data, as ECG is a continuous data 

taken for a very long interval of time. Also by compressing 

redundant data from the signal can be removed which actually 

takes considerably large area in memory. The need of signal 

transmission over telephone lines or antenna for remote 

analysis makes the compression and data reconstruction of the 

signal an important issue in signal processing. ECG is a 

graphic display of the electrical activity of the heart. Due to 

low cost and noninvasion, ECG signal has been extended for 

heart disease diagnosis and ambulatory monitoring. For 

storage and transmission of large signal data, it is necessary to 

compress the ECG signal data. 

 

                 Data compression has its application in many fields 

and so as in the field of medical science. ECG is an important 

parameter that measures patient’s health and reports 

abnormalities if any. This thesis has done a survey of various 

kinds of ECG data  compression techniques. Recently, 

numerous research and techniques have been developed for 

compression of the signal. These techniques are essential to a 

variety of application ranging from diagnostic to ambulatory 

ECG’s. Thus, the need for effective ECG compression 

techniques is of great importance. Many existing compression 

algorithms have shown some success in electrocardiogram 

compression; however, algorithms that produce better 

compression ratios and less loss of data in the reconstructed 

signal are needed.  

 

II. DISCRETE COSINE TRANSFORM(DCT) 

 

The Discrete Cosine Transform (DCT) was 

developed to approximate Karhunen-Loeve Transform (KLT) 

when there is high correlation among the input samples, which 

is the case in many digital waveforms including speech, 

music, and biomedical signals. The DCT D = [d0 d1 d2 

d3………..dN1-1]T Of the vector x is defined as follows 

 

d0=                     ( 1) 

 

dk =   , 

k = 1,2,…………….. N-1    ( 2) 
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Where dk  is the kth DCT coefficient. The inverse discrete 

cosine transform (IDCT) of d is given by 

 

   
n1=0,1,2………………..N-1         (3)   (3.3) 

  

There exist fast algorithms, Order (NlogN), to 

compute the DCT .Thus, DCT can be implemented in a 

computationally efficient manner. Two recent image and 

video coding standards, JPEG and MPEG, use DCT as the 

main building block. A discrete cosine transform (DCT) 

expresses a sequence of finitely many data points in terms of a 

sum of cosine functions oscillating at different frequencies. 

DCTs are important to numerous applications in science and 

engineering, from lossy compression of audio (e.g. MP3) and 

images (e.g. JPEG) (where small high frequency components 

can be discarded), to spectral methods for the numerical 

solution of partial differential equations. The use of cosine 

rather than sine functions is critical in these applications. For 

compression, it turns out that cosine functions are much more 

efficient whereas for differential equations the cosines express 

a particular choice of boundary conditions. In particular, a 

DCT is a Fourier-related transform similar to the discrete 

Fourier transform (DFT), but using only real numbers. DCTs 

are equivalent to DFTs of roughly twice the length, operating 

on real data with even symmetry (since the Fourier transform 

of a real and even function is real and even), where in some 

variants the input and/or output data are shifted by half a 

sample. Discrete Cosine Transform is a basis for many signal 

and image compression algorithms due to its high 

decorrelation and energy compaction property. A discrete 

Cosine Transform of N sample is defined as  

 

  
u = 0,1,2……………..N-1     (4) 

 

Where                                

                  
 

The function f(x) represents the value of xth samples 

of input signals. F(u) represents DCT coefficients. The inverse 

DCT is defined in similar fashion as   

 

  
x1 = 0,1,2…………N-1      (5) 

 

 

 

III. DISCRETE SINE TRANSFORM 

 

Discrete sine transform (DST) is a Fourier-related 

transform similar to the discrete Fourier transform (DFT), but 

using a purely real matrix. It is equivalent to the imaginary 

parts of a DFT of roughly twice the length, operating on real 

data with odd symmetry (since the Fourier transform of a real 

and odd function is imaginary and odd), where in some 

variants the input and/or output data are shifted by half a 

sample. Like any Fourier-related transform, discrete sine 

transforms (DSTs) express a function or a signal in terms of a 

sum of sinusoids with different frequencies and amplitudes. 

Like the discrete Fourier transforms (DFT), a DST operates on 

a function at a finite number of discrete data points. The 

obvious distinction between a DST and a DFT is that the 

former uses only sine functions, while the latter uses both 

cosines and sines (in the form of complex exponentials). 

However, this visible difference is merely a consequence of a 

deeper distinction: a DST implies different boundary 

conditions than the DFT or other related transforms. 

 

Formally, the discrete sine transform is a linear, 

invertible function F: RN -> RN (where R denotes the set of 

real numbers), or equivalently an N × N square matrix. There 

are several variants of the DST with slightly modified 

definitions. The N real numbers 𝑥0,….𝑥𝑁−1 are transformed 

into the N real numbers 𝑋0,…..𝑋𝑁−1 according to 

 

Xk =   

k =0,1,…….. N-1                          (6) 

 

IV. FAST FOURIER TRANSFORM (FFT) 

 

A fast Fourier transform (FFT) is an efficient 

algorithm to compute the discrete Fourier transform (DFT) 

and it’s inverse. There are many distinct FFT algorithms 

involving a wide range of mathematics, from simple complex-

number arithmetic to group theory and number theory. A DFT 

decomposes a sequence of values into components of different 

frequencies but computing it directly from the definition is 

often too slow to be practical. An FFT is a way to compute the 

same result more quickly. Computing a DFT of N points in the 

naive way, using the definition, takes O(N2) arithmetical 

operations , while an FFT can compute the same result in only 

O(N log N) operations.  

 

Fast Fourier Transform is a fundamental transform in 

digital signal processing with applications in frequency 

analysis, signal processing etc. The periodicity and symmetry 

properties of DFT are useful for compression. The uth FFT 

coefficient of length N sequence {f(x)} is defined as 
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u = 0,1,2……………..N-1           ( 7) 

 

And its inverse transform is calculated from 

 

  
x = 0,1,2………. N-1                     ( 8) 

 

V. DISCRETE COSINE TRANSFORM–II (DCT – II) 

 

The most common variant of discrete cosine 

transform is the type-II DCT [54]. The DCT-II is typically 

defined as a real, orthogonal (unitary), linear transformation 

by the formula 

 

=                  (9) 

 

for N inputs 𝑥𝑛 and N outputs , where  is the 

Kronecker delta (= 1 for k = 0 and = 0 otherwise). DCT-II can 

be viewed as special case of the discrete Fourier transform 

(DFT) with real inputs of certain symmetry. This viewpoint is 

fruitful because it means that any FFT algorithm for the DFT 

leads immediately to a corresponding fast algorithm for the 

DCT-II simply by discarding the redundant operations. The 

discrete Fourier transform of size N is defined by 

 

=                                        (10) 

 

where 𝜔𝑁=𝑒−2𝜋𝑖𝑁 is an Nth primitive root of unity. In order to 

relate this to the DCT-II, it is convenient to choose a different 

normalization for the latter transform as 

 

=2                         (11) 

2cos = +                     (12) 

=2                        (13) 

 

=            (14) 

 

Thus, the DCT-II of size N is precisely a DFT of size 4N, of 

real-even inputs, where the even-indexed inputs are zero. 

 

VI. BLASCHKE UNWINDING AFD 

 

Algorithm 1 illustrates how the Blaschke unwinding 

AFD is applied to compress a real-valued signal. First, the 

input real-valued signal F is projected to H2 space and we get 

F+. In practice, we could safely assume that 

 

2                                 (15) 

 

holds, where  means taking the real part and c0 is 

the zeroth Fourier coefficient of F. c0 is the first data point we 

save for the signal compression, and F+ is initialized as the 

first remainder F1. 

 

Algorithm I : Blaschke Unwinding AFD based 

Compression 

 

Input: Real-valued input signal F, sets of parameters a  D 

and the decomposition level N. 

 

Output: ,   and a finite number of zeros 

 
l: Get the projection signal F+of F in the Hardy space. 

2: Initialize Fl = F+. 

3: for n = 1 to N do. 

4: Obtain the inner function In and outer function On of Fn so 

that Fn = In On; 

5: Get zeros , of In by Algorithm 2; 

6: Get an = arg max{(1-|a|2)|On(a)|2:a  

7: Get cn =  

8: Get Fn+1 = ; 

9: return ,  . 

 

 

Second, extract the inner function by calculating 

zeros of F1 by the method introduced in [59], where we 

assume that F1 has finite roots on  := {z ∈ Cǀ  ≤ 1} [59]. 

The detailed steps of numerical calculation for calculating 

zeros of F1 are performed in Algorithm 2. Then accordingly, 

get the outer function O1 by the Nevanlinna factorization. 

Third, The set of {an}, n = 1, 2, . . . , in  consisting of discrete 

points in ⅅ is generated by dividing ⅅ into rectangular grid to 

get the TM system  and evaluators {ea} . Then, the 

decomposition of O1 is based on the TM system. During the 

decomposition, the maximal selection principle is applied in 

the selection of a1 with the aid of evaluators. Suppose the 

decomposition level is N ∈ N. Iterate the above three steps, 

each on the remainder of the previous step, for N times, and 

we end up with {  }, the modified Blaschke products {Bn}, 

and Mn zeros, for n = 1, . . .  N. As a result, we obtain 2N + 1 
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parameters, including , and   , as well as 

 zeros. cn and an, where n = 1, . . .  N, as well as 

 zeros, are other data points we save for the data 

compression. 

 

Algorithm II: Procedure for calculating zeros 

 

Input: F,   

Output: zeros of F,  

l: Determine for M, M=  

2: Initialize G1 : F 

3: for j = 1 to M1 do. 

4: Evaluate  arg  

5: Get rj satisfying  

6: Get  

7: return . 

 

VII. RESULT ANALYSIS 

 

We used data in the MIT-BIH database to test the 

performance of the six coding techniques. The ECG data is 

sampled at 142Hz and the resolution of each sample is 

11bits/samples. The amount of compression is measured by 

CR and the distortion between the original and reconstructed 

signal is measured by Percentage Mean Square Difference ( 

PRD). A data compression algorithm must represent the data 

with acceptable fidelity while achieving high CR. 

 

Figure 3  shows the original ECG signal record 100 

which are selected from MIT-BIH arrhythmia database and its 

reconstructed waveform when compressed by FFT. 

 

 
Figure 3 FFT compression of MIT-BIH record 100 

Fig.4 shows the original ECG signal record 100 

which are selected from MITBIH arrhythmia database and its 

reconstructed waveform when compressed by DCT. 

 

 
Figure 4 DCT compression of MIT-BIH record 100 

 

Figure 5  shows the original ECG signal record 100 

which are selected from MIT-BIH arrhythmia database and its 

reconstructed waveform when compressed by DST. 

 

 
Figure 5.  DST compression of MIT-BIH record 100 

 

Figure 6 shows the original ECG signal record 100 

which are selected from MIT-BIH arrhythmia database and its 

reconstructed waveform when compressed by DCT-2. 

 

 
Figure 6 DCT-2 compression of MIT-BIH record 100 
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In  Blaschke unwinding AFD, the compression 

consists of two steps. The first step carries out the Hardy 

projection and the Blaschke unwinding AFD compression. 

The second step is the lossless Huffman encoding. For the 

decompression, it is the inverse of the compression, including 

the Huffman decoding and the inverse Blaschke unwinding 

AFD process. 

 

 
Figure:7 Waveforms of original, reconstructed and error 

signals with N = 8  taken from record 100 

 

 
Figure:8 Waveforms of original, reconstructed and error 

signals with N = 10  taken from record 100 

 

           The comparison table shown in Table  1 details the 

resultant compression techniques. This gives the choice to 

select the best suitable compression method. A data 

compression algorithm must represent the data with acceptable 

fidelity while achieving high CR. As the PRD indicates 

reconstruction fidelity; the increase in its value is actually 

undesirable. Blaschke unwinding AFD which leads to a high 

compression rate with a high fidelity. Compared with existing 

algorithms, like FFT, DCT, DST and DCT-2. 

 

Table  1 Comparision of resultant compression techniques 

Method CR PRD 

FFT 16.01 1.10 

DCT 

 

16.87 1 

DST 

 

11.62 1.19 

DCT2 

 

22.21 1.27 

Blaschke 

unwinding 

AFD(N=8) 

39.34 0.71 

Blaschke 

unwinding 

AFD(N=10) 

26.09 0.57 

 

VIII. CONCLUSION 

 

Among the five techniques presented, DST provides 

lowest CR and distortion is also high. DCT improves CR and 

lowers PRD. Next is FFT which gives CR 16.01 with PRD as 

1.10. But DCT-II provides an improvement in terms of CR of 

22.21 but PRD increases up to 1.27. Thus an improvement of 

a discrete cosine transform (DCT)-based method for 

electrocardiogram (ECG) compression is presented as DCT-II 

in terms of amount of compression. From table 1 we can 

observe that using Blaschke unwinding AFD based 

compression we are getting higher compression rate in 

comparison to other compression technique. Hence this 

technique is better than other ECG compression technique in 

both point of consideration. 
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