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Abstract— Hyperspectral (HS) image has rich spectral
information content, which facilitates multiple applications
including remote sensing. Due to the big data size of the HS
image, compression is a required process for the efficiency of
image storage and transmission. However, the complexity of the
compression algorithms turns real-time compression into a very
challenging task. A novel listless set partitioned hyperspectral
image compression algorithm is proposed. The proposed
compression algorithm uses zero block cube tree structure to
exploit the inter and intra sub-band correlation to achieve the
compression. From the result, it has been clear that the proposed
compression algorithm has low coding complexity with at-par
coding efficiency. Thus, it can be a suitable contender for low-
resource hyperspectral image sensors.
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I. INTRODUCTION

Hyperspectral image has abundant spatial and spectral
information which are gathered in spectral range from 400 nm
to 2500 nm having a spectral resolution of 10 nm [1]. The HS
images are widely used in remote sensing, precision
agriculture, military target detection, mineral exploration,
health care etc [2]. Due to the large data size and a lot of
unwanted redundancy of HS images, image compression
becomes a necessary step before transmission of the image
from the sender end to the receiver end. Besides saving the
onboard sensor memory, the hyperspectral image compression
algorithm (HSICA) also reduces computational complexity
(time), saves transmission bandwidth and reduces the sensor
power computation [3]. The HS image is 3D data but it is
different from the video data as the third dimension (spectral)
is related to the ‘wavelength’ while for video, the third
dimension is time (temporal) [4].

The HSICA are broadly divided into five different classes
named as predictive coding (PC), vector quantization (VQ),
machine learning (ML) based algorithm, transform-based
coding (TC) and hybrid compression algorithm. The PC
compression algorithms are the least complex compression
algorithm but they have very low coding gain. The VQ
compression algorithms use the dictionary to achieve
compression. The same dictionary is available in the encoder
and decoder end. The dictionary generates the coded symbol
and the same pattern is defined as a unique symbol. The ML
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compression algorithms have high coding gain but it has high
coding complexity. The PC, VQ and ML compression
algorithms work only for lossless compression and if any data
loss happens during the transmission then the coding gain
reduces significantly. The TC compression algorithms apply
the mathematical transform (wavelet, cosine, fourier) to the
HS image and convert the same to the frequency domain.
Among these mathematical transform, wavelet transform is
widely used as it gives excellent energy clustering in space
and frequency due to its pyramid structure. The hybrid
compression algorithm is the combination of any two of the
mentioned algorithms to achieve compression [5-6].

The aim of the manuscript is to introduce a listless
implementation of the block cube tree coding technique which
has low computation complexity with high coding gain and
should work at any coding rate. The remaining manuscript is
arranged as follows. Section 2 covers related work associated
to the proposed compression algorithm. Section 3 gives
detailed explanation of the proposed HSICA followed by
outlines simulation results and detail analysis. Conclusion is
covered in the last section of the paper.

II. RELATED WORK

The wavelet transform-based set partitioned HSICA is a
special type of compression algorithm which have high coding
efficiency, embedded output and low coding complexity.
These algorithms use the set structure (pyramid structure of
the transform HS image) to accumulate massive number of
insignificant coefficients of the transform HS image either by
zero block cube or zero tree or zero block cube tree [7]. The
most significant bit plane is given high priority and encoded
first till the bit budget is available. The 3D-SPECK [8] uses
zero block cube to group the insignificant coefficients. It
utilizes the two linked lists to track the significance of the sets
or coefficients. In the same way, 3D-SPIHT [9] uses zero tree
cube to group the insignificant coefficients and 3D-WBTC [10]
uses zero block cube tree to group the insignificant
coefficients. The 3D-SPIHT [9] and 3D-WBTC [10] employ
the three linked lists to find the significance of the sets or
coefficients, while 3D-NLS and 3D-LSK are listless HSICAs,
use specific markers to trace the significance of particular sets
or coefficients. [11]. The 3D-LMBTC and 3D-ZM-SPECK
have low coding memory requirements but this comes with
the cost of coding gain. The 3D-LCBTC utilizes two types of
markers and two small lists for the tracking of the sets [12].

III. 3D - LISTLESS BLOCK CUBE TREE CODING
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The 3D-Listless Block Cube Tree Coding (3D-LBCTC) is the
low-weight listless implementation of the 3D-WBTC [10].
The 3D-WBTC utilizes the linked list (three) to trace the
significance of the block cube trees or coefficients. At a very
low bit rate, the list-based HSICAs have low computation
complexity but at the medium and high bit rates, these
algorithms suffer from high computation complexity which
reduces the performance of the HS image sensor. The
proposed HSICA 3D-LBCTC does not use any linked list but
it uses eight different types of markers for the tracking
(coefficients or sets). Details of markers employ 3D-LBCTC
are presented in Table 1.

Table 1 : Details of the markers used in the proposed HSICA

Marker Detail of marker
Ic This coefficient is insignificant or not checked to the
current bit plane
This coefficient is newly significant to the current bit
NC .
plane and no refinement is needed
e This coefficient is already significant in the previous
bit plane and the refinement bit is generated
This coefficient is the first child of the tree having all
DC .
descendants of its parents.
cc This coefficient is checked for significance during the
insignificant pass
D This coefficient is the first child in the block cube tree
having all the descendants of the parent block cube.
e This coefficient is the first grandchild having all
grand descendants of its grandparent block cube
SN* These markers are used at the leading nodes of the bit
plane
SN2 This coefficient is the first child of the SD set. This
coefficient and its sixty-four neighbors (4 x 4 x 4) can
be skipped
SN3 This coefficient is the first grandchild of the SD set.
This coefficient and its five hundred twelve neighbors
(8 x 8 x 8) can be skipped
SN4 This coefficient is the first great-grandchild of the SD
set. This coefficient and its four thousand ninety-six
neighbors (16 x 16 x 16) can be skipped

The encoding process of the proposed HSICA is divided into
two pass named as Initialization Pass (IP) and Bit Plane Pass
(BPP). Further, BPP is divided into three sub-passes named as
Insignificant Coefficient Pass (ICP), Insignificant Set Pass
(ISP) and Refinement Pass (RP).

Initialization Pass : This compression algorithm is initialized
by calculating the top bit plane with the help of Eq 1. The

transform HS image is converted to the 1D array Y; through
linear indexing.

n = [log,[max{|Y; |}l L
7= 2"

The ‘n’ is the top most bit plane while T is the maximum
threshold of the transform HS image as shown in Eq 2. All
block cubes present in the LLL band are tested for
significance first. This pass runs only one-time throughput the
encoding process.

Bit Plane Pass : After the IP, the BPP is initiated. This pass
runs for all bit planes until the bit budget is available. It has
the following three sub-passes.

a. Insignificant Coefficient Pass (ICP) : This pass is
used to test the coefficients which are insignificant to
the last bit plane. The coefficient having the ‘IC
marker’ will be tested against current threshold. If
the coefficient is significant against the current
threshold then the marker is changed to the ‘CC
marker’.

b. Insignificant Set Pass (ISP) : This pass performs
the significant testing of the sets (zero tree) against
the current threshold. If set is significant against the
threshold, then it is partitioned as per zero block cube
tree partitioned rule. This process is replicated till it
reaches to the coefficient level or partitioned sets are
insignificant.

c. Refinement Pass (RP) : All previous significant bit
(significant in last bit plane) has to go through the
refinement pass. The refinement bit generates and
sends to the output bit stream. The coefficients
having ‘SC markers’ or ‘CC markers’ will generate
the refinement bit against the current threshold.

The HSICA initiates from the topmost bit plane and runs till
the bit budget is available. All block cubes in the LLL band
are tested at the beginning of the encoding process. The size
of the block cube is ‘2 x 2 x 2’. The block cube present in the
top of left corner has no descendant and the other seven
corresponding block cubes have eight offspring each in the
high-frequency sub-bands. This creates the block cube tree
and they are marked as ‘SN* marker’ according to the wavelet
orientation level. If any block cube tree is tested significant
against present threshold, it will be partitioned into the block
cubes and the change of the marker also happens. The process
is repeated till last bit plane gets processed or the bit budget is
available.

IV. EXPERIMENT RESULT & ANALYSIS

To measure the performance of the proposed HSICA, it is
compared with the state of art HSICAs 3D-SPECK (HSICA
1), 3D-SPIHT (HSICA 2), 3D-WBTC (HSICA 3), 3D-LSK
(HSICA 4), 3D-NLS (HSICA 5), 3D-LMBTC (HSICA 6),
3D-ZM-SPECK (HSICA 7) and 3D-LCBTC (HSICA 8). The
three standard HS images Washington DC (HS Image I), and
Cuprite (HS Image II) are used for performance evaluation.
All algorithms are run on the same hardware and software
platform. The coding complexity (computation time) and
coding efficiency (Peak Signal to Noise Ratio) is used as
performance measuring parameter for the 3D-LBCTC with
the other state of art HSICA [8-16].

The coding efficiency is determined in decibels (dB) for Peak
Signal to Noise Ratio (PSNR) [17]. The five-level 3D-DWT is
applied to the HS image. The transform coefficients are

Authorized licensed use limited to: Motilal Nehru National Institute of Technology. Downloaded on February 03,2023 at 12:25:36 UTC from IEEE Xplore. Restrictions apply.



quantized to the nearest integer and covert in 1D array through
linear indexing [15].

4.1 Coding Complexity : The coding complexity of any
HSICA is calculated as time required by the hardware
resources to run (encode and decode) it. The decoding time is
lower than the encoding time as there is no comparison
operations are required in the decoding process. The high
complex nature of any HSICA requires high processing time
for generation of the output bit stream. From Table 2 and
Table 3, it is clear that the proposed 3D-LBCTC requires less
time than the other HSICA except for 3D-LSK, 3D-NLS and
3D-LCBTC. It is due to the listless nature of the compression
algorithm. The list-based algorithms required multiple read or
write operations (several memory access) which makes the
algorithm complex in nature. Thus, it requires more time for
the encoding/decoding of the coefficients [17].

4.2 Coding Efficiency : The coding efficiency is
calculated in terms of the number of bits required to achieve
the desired quality of the reconstructed HS image. It is
measured mathematically as in the terms of PSNR as in Eq 3

Signal Amplitude
PSNR = 20 logm[ g M?;E max] 3

MSE=2 > > > [Aw )~ B 4

a b c

The mean square error (MSE) is defined in Eq 4 The total
number of pixels in the HS image is defined by the A while the
original HS image and reconstructed HS image are defined as
A(aB,y) & B(o,p.y) .

It is observed from Table 4 that the coding efficiency of the
3D-LBCTC varies from -0.26 dB to 1.7 dB. The loss of the
coding gain is due to the bit budget exhaust in between the bit
plane. When the bit budget is exhausted in end of the bit plane,
it gives a slightly higher coding gain. The variation of the
coding gain between 3D-LBCTC and 3D-SPECK is -0.2 dB
to +0.37 dB for HS image I and -0.13 dB to 0.27 dB for HS
image II. The dissimilarity of the coding gain between 3D-
LBCTC and 3D-SPIHT is 0.01 dB to 0.58 dB for HS image I,
and 0.65 dB to 1.7 dB for HS image II. In the same way, the
difference between the 3D-LBCTC and 3D-WBTC is -0.18
dB to 0.37 dB for HS image I, and -0.24 dB to 0.17 dB for HS
image II.

V. CONCLUSION

In this paper, we have proposed a novel compression
algorithm that exploits intra sub-band and inter-sub-band
correlation to achieve a high coding gain. Due to its listless

nature, it has low coding complexity and fixed coding
memory, which makes it as an optimum choice for the
onboard HS image sensors. The coding complexity can be
reduced further by reducing the number of markers. The
coding gain can also increase with the use of curvelet or
ripplet or contourlet transform as edges in the HS images are
define properly through these advance mathematical transform.
The coding memory can reduce through minimize the number
of markers.
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Table 2 : Analysis of the computational complexity of the different HSICAs with the 3D-LBCTC (Encoding Time)
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Table 3 : Analysis of the computational complexity of the different HSICAs with the 3D-LBCTC (Decoding Time)
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Table 4 : Analysis of the coding efficiency of the different HSICAs with the 3D-LBCTC (PSNR)
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