GENOME SIZE AND GENETIC HOMOGENEITY OF REGENERATED PLANTS: METHODS AND APPLICATIONS

ALA

Editor: **A. Mujib**

Bentham Books

Genome Size and Genetic and Gene orgeneity of Regener Plants: Methods and Applications - Kegi - .s: Methods Applications **Homogeneity of Regenerated**

Ju By or anywhere Mu;

Not be distributed of the main of the distributed of th **A. Mujib** Department of Botany Jamia Hamdard New D-" Not be distributed or uploaded to anyone or anywhere ____epartment of Bota Jamia Hamdard New Delhi-1100-T Not be distributed or uploaded to anyone or anywhere Jelhi-1 India

pr anywhere Genome Size and Genetic Homogeneity of Regenerated Plants: Methods and Applications anyone or anywit

Editor: A. Mujib

ISBN (Online): 978-981-5165-55-5

ISBN (Print): 978-981-5165-56-2

ISBN (Paperback): 978-981-5165-57-9

anyone or anywhere Jate Use only Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved. First published in 2023. Not be distributed or uploaded to anyone or anywhere Not be distributed or uploaded to anyone Not be distributed or up of the

Not be dis

BENTHAM SCIENCE PUBLISHERS L

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

- 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to all anis Lice ally terminate wit. settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
- 2. Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

PREFACE	
LIST OF CONTRIBUTORS	ii
CHAPTER 1 RECENT ADVANCEMENTS IN CRISPR/CAS-BASED GENOME EDITING IN	
PLANTS	
Anurag Panchal, Tuhin Das, Roshan Kumar Singh and Manoj Prasad INTRODUCTION	1
CRISPR-CAS SYSTEM AND THEIR NUCLEASES	3
Application of CRISPR-Cas-Mediated Genome Editing in Abiotic Stress Tolerance in	
Plants	
Modification in Yield-Related Traits	
Alteration in Nitrogen Use Efficiency (NUE) and Herbicide Tolerance Alteration in Multiple Abiotic Stress Tolerance	
Application of CRISPR-Cas-Mediated Genome Editing in Pathogen Stress Tolerance in	/
Plants	8
CRISPR-Cas Based Plant Genome Editing and Viral Resistance	
CRISPR Approach as an Antifungal Defense	
CRISPR-Cas9 Based Genome Editing in Bacterial Disease Resistance	
Bottlenecks in the Usage of CRISPR/Cas9 Technology in Stress Management in	
Plants	
CONCLUSION	
REFERENCES	16
CHAPTER 2 MOLECULAR MARKERS USED IN THE ANALYSIS OF SOMACLONAL	
VARIATION DURING PLANT TISSUE CULTURE	23
Rosalía Núñez-Pastrana, Carlos A. Cruz-Cruz, Marco V. Rodríguez-Deméneghi, Régulo	
C. Llarena-Hernández and Marco A. Ramírez-Mosqueda	WITTE
INTRODUCTION	
SOMACLONAL VARIATION	
Factors Contributing to the Development of Somaclonal Variants Subcultures	
Plant Growth Regulators	
The Explant	
Molecular Techniques to Assess Somaclonal Variation	
Random Amplified Polymorphic DNA (RAPD)	
Amplified Fragment Length Polymorphism (AFLP)	
Selective Amplification of Microsatellite Polymorphic Loci (SAMPL)	29
Simple Sequence Repeats (SSRs)	29
Expressed Sequence Tag-SSR (EST-SSR)	29
Inter-Simple Sequence Repeat (ISSR)	30
Sequence Characterized Amplified Region (SCAR)	
Direct Amplification of Minisatellite DNA Region (DAMD)	21
Start Coden Targated (SCoT) Polymorphism (IKAP)	326
Retrotransposon-Based Molecular Markers	
Next-Generation Sequencing	33
Analysis of Epigenetic Changes During in vitro Culture	33
CONCLUDING REMARKS	34
REFERENCES	34
Inter-Simple Sequence Repeat (ISSR) Sequence Characterized Amplified Region (SCAR) Direct Amplification of Minisatellite DNA Region (DAMD) Targeted Region Amplification Polymorphism (TRAP) Start Codon Targeted (SCoT) Polymorphism Retrotransposon-Based Molecular Markers Next-Generation Sequencing Analysis of Epigenetic Changes During in vitro Culture CONCLUDING REMARKS REFERENCES	
NG EO, , O,	
NOT	
Retrotransposon-Based Molecular Markers	
NOT	

melt	
CHAPTER 3 APPLICATION OF MOLECULAR MARKERS IN REVEALING GENETIC	
STABILITY AMONG <i>IN VITRO</i> REGENERANTS OF DIFFERENT VALERIANA SPECIES- A PHARMACEUTICALLY VALUED PLANT	43
Taiba Saeed, Irfan Bashir Ganie, Sabaha Tahseen, Adla Wasi, Zishan Ahmad and	-C-
Anwar Shahzad	
INTRODUCTION TO VALERIAN SPECIES	
Classification	
Botanical Description	
PHARMACOLOGY AND THERAPEUTICS OF VALERIANA	
NEED FOR MICROPROPAGATION	
CHEMISTRY OF VALERIANA PHARMACOLOGY AND THERAPEUTICS OF VALERIANA NEED FOR MICROPROPAGATION INSIGHT INTO THE GENOME CHARACTERISTICS OF VALERIANA: GENOME SIZE NEED FOR ASSESSMENT OF GENETIC INTEGRITY OF REGENERANTS Use of Biochemical and Molecular Markers CONCLUSION ACKNOWLEDGEMENT	
SIZE	
NEED FOR ASSESSMENT OF GENETIC INTEGRITY OF REGENERANTS	
CONCLUSION	
ACKNOWLEDGEMENT	
REFERENCES	54
CHAPTER 4 GENETIC VARIATION AND GENETICAL CONTROL OF GROWTH AND	
FLOWERING IN WOODY PLANTS: MOLECULAR TECHNIQUES	60
Tomohiro Igasaki INTRODUCTION	
	60
GENETICALLY-MODIFIED POPLAR OVEREXPRESSING THE GENE FOR	(1
GIBBERELLIN 20-OXIDASE GENETIC TRANSFORMATION OF POPLAR OVEREXPRESSING GA 20-OXIDASE	$63 \qquad 63$
Growth Measurements of Recombinant Poplar	
ENDOGENOUS HORMONE OF RECOMBINANT POPLAR	65
EVALUATION OF THE GA20-OXIDASE GENE	65
POPLAR RECOMBINANT WITH DOWN-REGULATION OF THE GENE FOR	0
TERMINAL FLOWER 1 ORTHOLOG CREATION OF GM POPLAR WITH DOWN-REGULATED PNTFL1 EXPRESSION	
PHENOTYPES OF RECOMBINANT POPLAR	
Future Development of Suppression of PnTFL1 Expression	
CONCLUDING REMARKS	70
REFERENCES	71
CHAPTER 5 SOMATIC EMBRYOGENESIS AND GENETIC HOMOGENEITY	W and
ASSESSMENT IN COFFEA - RECENT APPROACHES	73
Manoj Kumar Mishra, Arun Kumar C. Huded and Pavankumar Jingade	-000
INTRODUCTION	75
PROBLEMS ASSOCIATED WITH IN-VITRO PROPAGATION OF COFFEE	76
Browning of Media, Culture Establishment, and Micropropagation	76
Somatic Embryogenesis	7650
TYPES OF SOMATIC EMBRYOGENESIS IN COFFEA	
FACTORS AFFECTING SOMATIC EMBRYOGENESIS IN COFFEA	
Parental Genotype	=0
CULTURE MEDIA COMPOSITION	. 78
gize bei Th	
* De Eo, 70, 0,	
Nor	
, ctriv	
int be	
CULTURE MEDIA COMPOSITION	

PLANT GROWTH REGULATO	ORS AND SUPPLEMENTS	
	ONS	
	IS DURING SOMATIC EMBRYO-GENESIS	
	ATION AND HARDENING OF <i>IN-VITRO</i> PLANTS	
	OMATIC EMBRYO-DERIVED PLANTS	
	C EMBRYOGENESIS TECHNOLOGY IN COFFEE	
	AND ASSESSMENT OF GENETIC FIDELITY	
	eneity Using Gene Sequencing	
KEFERENCES	- (4)). - (4)).	
CHAPTER 6 CELLULAR AND MO	LECULAR TOOLS FOR THE INVESTIGATION O	F
SOMATIC EMBRYOGENESIS IN M	EDICAGO SPECIES	
INTRODUCTION	Le Use Voue Mere	
ROLE OF AUXIN 2 4D IN	THE PROCESSES OF INDUCTION AND DEVELOPM	IENT
	YO	
	es of Auxin Inducible Process	
	cess of SE	
	EALS THE RELATIONSHIP BETWEEN GENOME SI	
	EALS THE RELATIONSHIP BETWEEN GENOME SI NDUCE DSE	
	OR EVALUATING THE EFFICIENCY OF THE INDUC	
	<u>702 16 0. 170.</u>	
REFERENCES		119
CHADTED 7 FLOW CVTOMETRY	ANALVSIS OF IN VITRO INDUCED DOLVELOIDA	Z IN
	ANALYSIS OF IN VITRO INDUCED POLYPLOIDY	
		123
	tha Banadka, Praveen Nagella and Jameel M. Al-	NNI
Khayri	or up orivate and any	203
INTRODUCTION		
	<u> </u>	
	Y IN PLANTS	
	rinciple	
General Applications of Flow	v Cytometry	132
Preparation of the Sample	We all all all all all all all all all al	
Determination of Polyploids		136
	ges of FCM	
	TS	
	1 480 21 4 180	145
		145
	1611 - el 101 - te	
	ASSESSMENT OF MICROPROPAGATED WOOD	Y
	ANALYSIS	151
Yelda Özden Çiftçi, Ergun Kaya, S	elin Galatali, Damla Ekin Ozkaya and Nil	
Türkölmez	wild's college	UST OND
INTRODUCTION	Jist 1	145 Y 151 152 164 164
	AL VARIATION IN IN VITRO cultures	
	Rootstock Plant Origin	164
	ction of Organogenesis	165
	riation	
Explant_indilced Lienetic Va		

nere har to the to the here	
Composition of Cultural Environment	
The Importance of Plant Growth Regulators	
Cultural Conditions	
Oxidative Stress	
DNA Methylation	
Loss of Nucleic Acid Precursors	
Abnormalities in Cell Division In Vitro	
CONCLUSION AND PROSPECTIVES	
REFERENCES	170
CHAPTER 9 GENETIC STABILITY IN MICROPROPAGATED ORCHIDS: ASSESSMENT	
BY MOLECULAR MARKERS AND FLOW CYTOMETRY	180
Leimapokpam Tikendra, Abhijit Dey, Manas Ranjan Sahoo and Potshangbam	
Nongdam INTRODUCTION	180
ORCHID MICROPROPAGATION	
Orchid Micropropagation from Different Explants	
Ploidy in Orchids	
In Vitro Induction of Polyploid Orchids	
GENETIC STABILITY ASSESSMENT	
Molecular Markers in Genetic Stability Assessment	
Molecular Markers in Genetic Stability Assessment Ascertaining Genetic Stability Through Flow Cytometry	
CONCLUSION	
CONCEUSION	
REFERENCES	
CHAPTER 10 APPLICATION OF FLOW CYTOMETRY IN BIOLOGICAL SCIENCES	232
Tahira Jatt, Majid Ali Maitlo, Sadam Hussain Shaikh and Dessireé Patricia Zerpa-	
Catanho	
Catanho INTRODUCTION	233
FLOW CYTOMETRY	
Principle of Flow Cytometry	
Components of a Flow Cytometry	
Fluidics System	
Optical System	
Electronics	
APPLICATIONS IN MEDICAL SCIENCES	
Phenotypic Characterization of Blood Cells	
Measurement of Apoptosis Markers	
Cell Viability	
Detection of Plasma Membrane Changes	238
Detection of Active Caspase-3 Activity	
Detection of Mitochondrial Proteins	238
Diagnosis of Primary Immunodeficiency Diseases	230
Severe Combined Immunodeficiency	239
A- LINKea Agammagiobulinemia	239
Hyper IgM Synaromes	239
Common Variable Immunodeficiency	239
Severe Combined Immunodeficiency X- Linked Agammaglobulinemia Hyper IgM Syndromes Common Variable Immunodeficiency Wiskott-Aldrich Syndrome and X-Linked Thrombocytopenia X- Linked Lymphoproliferative Syndrome	240
X- Linked Lymphoproliferative Syndrome	240
Familial Hemophagocytic Lymphohistiocytosis	240
Autoimmune Lymphoproliferative Syndrome	241
IPEX Syndrome	241
NOU SOLATOL	
NEL TO ROUT	
No	
trip -	
, ne	
~10 ¹	
La_	
IPEX Syndrome	

	3 <i>A Deficiency</i>
	242
	cterial Disease
	is
Platelets Flow Cytometry	
Diagnosis of Hematologic Malignancy	244
Post-Transplant HLA Antibody Prof	iling
Regulatory and Other Immune Cells	Monitoring
Post-Transplant Infection Managem	ent
Operational Tolerance Assessment	246
Transplantation Functional Assays	246
BIOTECHNOLOCY	247
Cycle Analysis and Nucleic Acid Content	
Cycle Analysis and Nucleic Acid Content	
Intracellular Calcium Concentration	
Bacterial Cultivation	
Yeast Cultivation	
Bacterial Cultivation Yeast Cultivation Mammalian Cell Cultivation Online Control of Bioprocesses Cell Sorting	
Online Control of Bioprocesses	
Cell Sorting	
High-Throughput Screening for Directed I	251 2volution
	the Uncultivated Majority 252
	the Uncultivated Majority
	he Uncultivated Majority
	253
	nology
	253
	255
	bgy and Differentiation
	257
Genome Size Estimation	
Intraspecific Variation in Genome Size at	he Homoploid Level 259
Measurement of DNA Base Composition	
Plant Cell Cycle Analysis	
	ion
	bring Reproductive Pathways
	ant Material Cultured In Vitro
	262 262
	its Components
	uclei
Viable and Inviable Pollen	
Plant Breeding	
	5 60, , 70,
	1,460
Lo Lo	
Plant Breeding	NOT DE

D.	lants Taxonomy	264
P.	ene Expression	204 264
	LUSION	
	EVIATIONS	
	RENCES	
		200
	11 FLOW CYTOMETRY-BASED ANALYSIS OF TISSUE CULTURE-DERIVED	272
	himi, Mojtaba Kordrostami, Ali Akbar Ghasemi-Soloklui and Jameel M. Al-	212
Khayri	North Merce	
INTRO	DUCTION	272
O P	LOIDY LEVEL	273
	ENOME SIZE	
	LOW CYTOMETRY DEVICE	
	NDOOR STANDARD PLANT	
	LUORESCENT PIGMENTS	
	HE ROLE OF FLOW CYTOMETRY IN TISSUE CULTURE	
	hromosome Count	
	omaclonal Variation	
	roduction of Haploid Plants	
	nther and Ovule Tissue Culture	
	rotoplast	
	Parametric Analyses Available for Protoplasts Using FCM	
	LUDING REMARKS	
	OWLEDGEMENT	
REFE	RENCES	286
Gulab F INTRO F O C T G P D R R D	FIC FIDELITY OF REGENERATED PLANTLETS Khan Rohela and Pawan Saini DUCTION LOW CYTOMETRY TECHNIQUE FOR THE DETECTION OF THE PLOIDY LEVEL F REGENERATED PLANTS YTOLOGICAL MEASUREMENT/CHROMOSOMAL COUNTING METHOD FOR HE DETECTION OF THE PLOIDY LEVEL OF REGENERATED PLANTS ENOTYPING-BY-SEQUENCING (GBS) DATA FOR THE DETECTION OF THE LOIDY LEVEL OF REGENERATED PLANTS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY RAPD, FLP & AFLP MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY ISSR & COT MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY ISSR & COT MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY DAMD SRAP MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY DAMD SRAP MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY DAMA ARCODING MARKERS LUSION AND FUTURE PROSPECTIVE RENCES 13 INTERSPECIFIC GENOME SIZE (2C DNA) VARIATION IN SOME	294 295 296 299 301
ORNAMEN SEQUENCE A. Muji	COT MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANT-LETS BY DAMD SRAP MARKERS ETECTION OF GENETIC FIDELITY OF REGENERATED PLANTLETS BY DNA ARCODING MARKERS LUSION AND FUTURE PROSPECTIVE RENCES I INTERSPECIFIC GENOME SIZE (2C DNA) VARIATION IN SOME FAL AND MEDICINAL PLANTS: IS IT A PHENOMENON OF PARTIAL AMPLIFICATION OR LOSS? b, Jyoti Mamgain, Yashika Bansal and Bushra Ejaz	327

INTRODUCTION		200
	E FACTORS INFLUENCING QUALITY NUCLEI ISOLATIC	
	F FACTORS INFLUENCING QUALITY NUCLEI ISOLATIC	
	er for Nuclei Isolation	
	e Standards	
	omes	
Making an Ideal	I Gating METRY APPLICATION IN TISSUE CULTURE AND FIELD GRO L AND MEDICINAL PLANTS: SOME EXAMPLES and 2c DNA Estimation in Some Ornamentals thes and Interspecific Genome Variation	
FLOW CYTOM	AETRY APPLICATION IN TISSUE CULTURE AND FIELD GRO	JWN 22/
OKNAMENTA.	L AND MEDICINAL PLANIS: SOME EXAMPLES	
Genome Size an	ad 2c DNA Estimation in Some Ornamentals	
Glaaiolus	The second se	
Corlander		
<i>Lephyrani</i>	thes and interspecific Genome variation	····· 333
Genome Size an Gladiolus Coriander Zephyrant Caladium Regenerat Genome Size On	Genome, Interspecific Variation And Genetic Homogeneity Analys	is of
Regeneral	rea Plants	
Genome Size Of	r 2c DNA Esumation in Some Medicinal Plants	
Allium Co	mome Size and the Chuemerson Number	
Aillum Ge	thus Conomo Sizo	
Tulophore	a Ganome and DNA Content	
Plactranth	hus Ganome and Interspecific Size Variation	
CONCLUSION	thes and Interspecific Genome Variation Genome, Interspecific Variation And Genetic Homogeneity Analys ted Plants	
KEI EKEI (CES	2011 080 US 010	
JECT INDEX	ers jold ate and	57
	P. of our interview of the second sec	\mathcal{O}
	go. 101, gro olin ol o	
11		
	1501 10 ⁶²⁰ 155 10 ¹¹⁰	
	Der Nh, Ste SUN	
	ed of personal private use worker of a personal private use only or a private use only or a private use only one only of the personal private to anyone only of the personal private to anyone of the personal private to anyone use use on the personal private to anyone use use of the personal private to anyone use use of the personal private to anyone use use on the personal private to anyone use use of the personal personal private to anyone use use of the personal	SUI
d'V	really equination	
10	induce one age use one	
	in a loo of UP in an all	
	E0, 70, 10, 70	and a
MOr.	and the second sec	
		.10110
	dist por upre ate at	
	Ser COLATOR SUNT 40 C	
1 St. L	K	
Po		
	istric erso plos	
	ed of or parsonal prived to a convolution of a conversional prived to anyone of a conversion of the or personal private use on the or personal private use on the or personal private use of the or personal private to anyone or or personal previse to anyone or personal	SI,,
	* DE EO, 70, 00, Y	
	NOT , the way to dec	
	1	Nº
	distring of the light	

CHAPTER 3

Application of Molecular Markers in Revealing Genetic Stability Among In Vitro Regenerants of Different Valeriana Species- a Pharmaceutically Valued Plant

Taiba Saeed^{1,4}, Irfan Bashir Ganie¹, Sabaha Tahseen¹, Adla Wasi¹, Zishan Ahmad^{2,3} and Anwar Shahzad^{1,*}

¹ Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U. P., India

² Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China

³ Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China

⁴ Department of Biosciences, Integral University, Lucknow, 226026, U.P., India

Abstract: Valeriana is an important genus due to its immense medicinal properties. This plant contains over 150-200 chemical constituents, which make it useful as a herbal remedy for various ailments. Conventionally, these plant species are cultivated through seeds: however, poor seed setting coupled with low germination rate restricts its cultivation in the wild as well as poses a problem for its cultivation. Due to irregular grazing and excessive harvesting by local people for herbal drugs, the wild population of Valeriana species are at a high risk of rapid elimination and extinction. Plant tissue culture is one of the most important methods used for the effective conservation of many rare, endangered and exploited plant species. However, the induction of genetic variability in regenerants may limit the purpose of micropropagation. Assessing the clonal fidelity of *in vitro* derived regenerants is highly essential to know whether plants are true to type or not. The development and utilization of molecular markers for the identification of plant genetic diversity is one of the most important progresses in the field of molecular genetics studies. Molecular markers are a prevalent tool, due to their stability, cost-effectiveness and ease of use for a variety of applications in the field of molecular genetics. Several molecular markers have been efficaciously employed to evaluate the clonal fidelity of the Valeriana clones so that only the elite, genetically identical plants are propagated. This chapter highlights the biology, pharmacology, need for micropropagation and application of DNA molecular markers in clonal fidelity assessment of the in vitro propagated Valeriana species.

Not be distributed of the distri * Corresponding author Anwar Shahzad: Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U. P., India; E-mail: ashahzad.bt@amu.ac.in

A. Mujib (Ed.) All rights reserved-© 2023 Bentham Science Publishers